

NOAA Technical Memorandum NMFS-NWFSC-26

Benthic Invertebrates and Sediment Characteristics in Freshwater, Beach Habitats of the Lower Columbia River, 1994-95

April 1996

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

NOAA Technical Memorandum NMFS

The National Marine Fisheries Service's Northwest Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible due to time constraints. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-AFSC series is now being used by the Alaska Fisheries Science Center.

This document should be cited as follows:

McCabe, G. T., Jr., and S. A. Hinton. 1996. Benthic invertebrates and sediment characteristics in freshwater, beach habitats of the lower Columbia River, 1994-95.. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-NWFSC-26, 111 p.

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

NOAA Technical Memorandum NMFS-NWFSC-26

Benthic Invertebrates and Sediment Characteristics in Freshwater, Beach Habitats of the Lower Columbia River, 1994-95

George T. McCabe, Jr. and Susan A. Hinton

National Marine Fisheries Service Northwest Fisheries Science Center Coastal Zone and Estuarine Studies Division 2725 Montlake Blvd. E., Seattle, WA 98112-2097

April 1996

U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary

National Oceanic and Atmospheric Administration D. James Baker, Administrator

SH 11 . A2

N621 ho. 26

C. a

National Marine Fisheries Service Rolland A. Schmitten, Assistant Administrator for Fisheries

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

ABSTRACT

In 1994 and 1995, we studied benthic invertebrates and sediment characteristics in freshwater, beach habitats (i.e., intertidal beaches and adjacent shallow subtidal habitats) at 10 areas of the lower Columbia River between River Kilometers 53 and 122. All 10 areas had been used in the past for the disposal of dredged material pumped from the bottom of the navigational channel. The disposal of dredged material in a narrow band (about 30 m wide) onto beaches in the lower Columbia River is commonly referred to as beach nourishment. The main goals of the study were to describe the benthic invertebrate communities at the beach nourishment areas and examine the relationship between sediment median grain size and standing crops of the amphipods *Corophium* spp., which are seasonally important in the diet of juvenile salmonids.

Benthic invertebrate and sediment samples were collected at the 10 beach nourishment areas in July and October 1994 and January and April 1995 with polyvinyl chloride (PVC) coring devices. The 10 areas were designated Beach Nourishment Areas O-34.0, W-40.9, W-43.8, O-44.0, W-45.0, O-45.1, O-47.8, O-57.0, W-70.1, and O-75.8. The "O" and "W" refer to Oregon and Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Mean numbers of taxa/categories (by month) collected in the beach nourishment areas were generally low, ranging from 2 to 8. Major benthic invertebrate taxa collected in the 10 beach nourishment areas included nemerteans, oligochaetes, *Fluminicola virens, Corbicula fluminea, Corophium salmonis, Corophium spinicorne*, Chironomidae larvae, and Ceratopogonidae larvae. With the exceptions of Beach Nourishment Areas O-47.8 and O-75.8, total densities (i.e., standing crops) of benthic invertebrates in the beach nourishment areas were not significantly different (P > 0.05) between the 4 months. Densities of *Corophium* spp., most of which were *C.* salmonis, were not significantly different (P > 0.05) between months, except at Area O-75.8. In all areas except Area O-45.1, total benthic invertebrate and *Corophium* spp. densities were significantly higher (P < 0.05) at sampling stations 30 m from the high tide mark on the beach than at stations 15 m from the high tide mark. Densities of *Corophium* spp. varied widely within and between areas, with densities at individual stations ranging from 0 to more than 82,000 organisms/m². The regression relationship for median grain size and *Corophium* spp. density was significant (P < 0.05); however, median grain size was a poor predictor of *Corophium* spp. density, explaining only 5% of the variation in *Corophium* spp. density (transformed).

All 10 beach nourishment areas supported substantial standing crops of *Corophium* spp. at times, particularly at stations along the 30-m transects. Since *Corophium* spp. are important prey for juvenile salmonids, and juvenile salmonids migrate along the beach nourishment areas, it is important to insure that *Corophium* spp. populations in these areas are not adversely impacted.

CONTENTS

ABST	RACT	iii
INTR	ODUCTION	1
METH	HODS	4
	Sampling	4
	Data Analyses	6
	Benthic Invertebrates	6
	Sediments	7
RESU	JLTS	8
		0
	Beach Nourishment Area O-34.0	0
	Benthic Invertebrates	15
	Sediments	15
	Beach Nourishment Area W-40.9	17
	Benthic Invertebrates	17
	Sediments	21
	Beach Nourishment Area W-43 8	27
	Benthic Invertebrates	27
	Sediments	33
	Beach Nourishment Area O-44.0	36
	Benthic Invertebrates	36
	Sediments	43
	Beach Nourishment Area W-45.0	43
	Benthic Invertebrates	43
	Sediments	47
	Beach Nourishment Area O-45 1	53
	Beach Routismicht Alea o 15.1	53
	Sediments	58
	Beach Nourishment Area O-47.8	61
	Benthic Invertebrates	61
	Sediments	67

	Beach Nourishment Area O-57.0	67
	Benthic Invertebrates	67
	Sediments	77
	Beach Nourishment Area W-70.1	79
	Benthic Invertebrates	79
	Sediments	85
	Beach Nourishment Area O-75.8	85
	Benthic Invertebrates	85
	Sediments	94
	Grain Size/Corophium spp. Relationship	94
DISC	CUSSION	94
АСК	NOWLEDGMENTS	100
CITA	ATIONS	101
APP	ENDIX	105

INTRODUCTION

Relatively little is known about benthic invertebrate communities in freshwater, beach habitats of the Columbia River downstream from Bonneville Dam, the lowermost dam. Benthic invertebrate communities in the Columbia River downstream from River Kilometer (RKm) 50 have been studied more than upstream populations (e.g., Durkin and Emmett 1980; Durkin et al. 1981; Holton et al. 1984; Emmett et al. 1986; Hinton et al. 1990, 1995). Upstream from RKm 50, benthic invertebrate studies have been limited generally to short-term or geographically limited studies (e.g., Blahm and McConnell 1979, Blahm et al. 1979, McCabe and Hinton 1990, McCabe et al. 1990). Sanborn (1975) sampled the benthos of four areas in the Columbia River between RKm 29 and 167 in 1973-74. McCabe et al. (1993b) studied the benthos in eight areas of the lower Columbia River between RKm 46 and 211 during four surveys; all sampling was conducted in channel areas with mean depths greater than 5 m.

In 1994 and 1995, we studied benthic invertebrates and sediment characteristics in shallow, freshwater habitats (i.e., intertidal beaches and adjacent shallow subtidal habitats) at 10 areas of the lower Columbia River between River Kilometers 53 and 122 (Fig. 1). All 10 areas had been used in the past for the disposal of dredged material pumped from the bottom of the navigational channel. The lower Columbia River is an important shipping channel in the Pacific Northwest, requiring the maintenance of a navigational channel from the mouth of the river to Portland, Oregon. Annually, the U.S. Army Corps of Engineers (COE) is responsible for removing and disposing of almost 6.9 million m³ of material from the bottom of the navigational channel. The dredged material is disposed of at three types of sites: in water, upland, and in shoreline (beach) areas. The third type, disposal of dredged material in

•

a narrow band (about 30 m wide) onto beaches in the lower Columbia River, is commonly referred to as beach nourishment. Habitats affected by beach nourishment typically include both intertidal and shallow subtidal habitats.

Because the lower Columbia River is presently designated as critical habitat for endangered Snake River Pacific salmon (*Oncorhynchus* spp.), the COE is required to complete biological assessments of the 10 areas prior to any future disposal of dredged material in these areas. Benthic invertebrates, particularly the amphipod *Corophium salmonis*, found in intertidal and shallow subtidal habitats of the Columbia River estuary are seasonally important in the diets of juvenile salmonids (McCabe et al. 1983, 1986; Kirn et al. 1986). Muir and Emmett (1988) found that *C. salmonis* and *C. spinicorne* were the dominant prey for juvenile salmonids collected during the spring of 1984 at Bonneville Dam.

The overall goal of the present study was to describe the benthic invertebrate communities at the 10 beach nourishment areas. Specifically, we assessed benthic invertebrate species composition, standing crops, diversity, and equitability. We also examined the relationship between sediment median grain size and standing crops of *Corophium* spp. The information in this manuscript was originally presented in a final report to the COE. Because of the lack of data on benthic invertebrates in freshwater, beach habitats of the lower Columbia River, we present the same data in this publication to make it available to a larger audience.

METHODS

Sampling

Benthic invertebrate and sediment samples were collected at the 10 beach nourishment areas in July and October 1994 and January and April 1995 (Fig. 1). At Beach Nourishment Area O-75.8, samples were actually collected on 1 August 1994, instead of in July. In addition, about 274 m (900 ft) of the upper end of Beach Nourishment Area O-74.5 is included with Beach Nourishment Area O-75.8. Each area is identified by an "O" or a "W," followed by a number. The "O" and "W" refer to Oregon and Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river (see U.S. Army Corps of Engineers 1991 for detailed navigational charts of the 10 beach nourishment areas).

Station locations (latitude and longitude) were established using the Global Positioning System, which also allowed stations to be easily reoccupied (Appendix Table). In each area, samples were collected along two parallel transects that were located about 15 m and 30 m, respectively, from the high tide mark on the shore. The number of sampling stations along each transect in the 10 disposal areas varied depending upon the length and habitat diversity of the area (Table 1). Odd-numbered stations were located along the 15-m transect, and even-numbered stations along the 30-m transect. At Beach Nourishment Areas O-34.0 and O-57.0, two stations outside of the disposal areas were sampled to provide information about benthic invertebrates in undisturbed habitats.

Eleven core samples were taken at each of 96 stations (Fig. 1). Samples were collected with a polyvinyl chloride (PVC) coring device with an inside diameter of 3.85 cm, a

Table 1. Numbers of sampling stations at 10 beach nourishment areas in the lower Columbia River, July 1994 through April 1995. The approximate lengths of the areas are also shown. In the "Area" column, the "O" and "W" refer to Oregon and Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Generally, 10 replicate samples were collected at each station.

Area	No. of stations	No. of station pairs ^a	Length of area (m)	
0-34.0	10 ^b	5	1,524	
W-40.9	6	3	762	
w-43.8	8	4	1,219	
0-44.0°	18	9	3,658	
W-45.0	10	5	1,585	
0-45.1°	4	2	457	
0-47.8	6	3	914	
0-57.0	8 b	4	1,265	
w-70.1	14	7	2,896	
0-75.8d	8	4	1,524	

^a Each station pair consisted of two adjacent sampling stations located about 15 and 30 m, respectively, from the high tide mark.

^b Does not include two sampling stations outside the beach nourishment area.

^c Beach Nourishment Areas 0-44.0 and 0-45.1 are not separated by a line on the COE charts (U.S. Army Corps of Engineers 1991); 3,658 m of the combined area was defined as Area 0-44.0 and 457 m of the combined area was defined as Area 0-45.1.

^d About 274 m of the upper end of Beach Nourishment Area 0-74.5 is included with Beach Nourishment Area 0-75.8.

penetrating depth of 15 cm, and a 174.6-cm³ sample volume (Appendix Fig.). Samples were collected by commercial divers at depths greater than 0.9 m. Ten core samples from each station were placed in labeled jars and preserved in a buffered formaldehyde solution (\geq 4%) containing rose bengal, a protein stain. In the laboratory, samples were washed with water through a 0.5-mm screen. All benthic invertebrates were sorted from each sample, identified to the lowest practical taxon, counted, and stored in 70% ethanol. The 11th benthic sample from each station was placed in a labeled plastic bag and refrigerated for analysis of grain size, percent silt/clay, and percent volatile solids by the COE North Pacific Division Materials Laboratory, Troutdale, Oregon.

Data Analyses

0

Benthic Invertebrates

Benthic invertebrate data were analyzed by station to determine species composition, densities (by taxon and total), and community structure (diversity and equitability). The Shannon-Wiener function (H) was used to determine diversity (Krebs 1978). Diversity is expressed as

$$H = -\sum_{i=1}^{s} (p_i)(\log_2 p_i)$$

where $p_i = n_i/N$ (n_i is the number of individuals of the *i*th taxon in the sample, and N is the total number of all individuals in the sample) and s = number of taxa. Equitability (E) was the second community structure index determined; E measures the proportional abundances among the various taxa in a sample (Krebs 1978) and ranges from 0.00 to 1.00, with 1.00 indicating all taxa in the sample are numerically equal. Equitability is expressed as

$$E = H/log_2s$$

where H = Shannon-Wiener function and s = number of taxa. Both H and E were calculated for each sampling station.

At each of the 10 beach nourishment areas, total benthic invertebrate densities, *Corophium* spp. densities, H, and E were each compared between transects (15- and 30-m) and months using two-way analysis of variance (ANOVA) (Ryan et al. 1985); densities were transformed (log_{10} (density + 1)) prior to running ANOVA. Means from the 10 samples at each sampling station provided the basic data entries for all statistical tests.

Sediments

Two-way ANOVA was used to compare median grain size between transects (15- and 30-m) and months. One high outlying value for median grain size (Area W-45.0, Station 5, July 1994) was removed prior to using ANOVA. Percent silt/clay and percent volatile solids values were compared using the Kruskal-Wallis test (Ryan et al. 1985) because of the non-normal distribution of the data.

The relationship between median grain size and *Corophium* spp. density was investigated by plotting the data from all 10 beach nourishment areas and then using linear regression. *Corophium* spp. densities were transformed $(\log_{10}(\text{density} + 1))$ prior to using regression. One regression was computed using data from all 4 months. The data were combined in this manner because overall there were no significant differences (P > 0.05) in *Corophium* spp. density or median grain size between months.

RESULTS

Beach Nourishment Area O-34.0

Benthic Invertebrates

At Beach Nourishment Area O-34.0, benthic invertebrate densities (total) were not significantly different between months (ANOVA, P > 0.05) (Table 2); the lowest mean density occurred in July 1994 (14,113 organisms/m²) and the highest in January 1995 (29,246 organisms/m²) (Table 3). Benthic invertebrate densities were significantly different between the 15- and 30-m transects (P < 0.05), with the highest densities occurring at stations along the 30-m transect (Tables 2 and 3). In the undisturbed area outside of the beach nourishment area (Stations 1 and 2), mean benthic invertebrate densities were lower than those in the beach nourishment area in all months (Table 3). No statistical analysis was performed because only two stations were sampled in the undisturbed area.

The mean numbers of taxa/categories collected in both the beach nourishment area and the undisturbed area were similar for each month, ranging from seven to eight (Table 4). Major benthic invertebrate taxa collected in the beach nourishment area included nemerteans, oligochaetes, the bivalve *Corbicula fluminea*, *Corophium salmonis*, and Chironomidae larvae (Table 5). Summaries by station for all months and beach nourishment areas are available upon request from National Marine Fisheries Service, Northwest Fisheries Science Center, Point Adams Biological Field Station, P.O. Box 155, Hammond, OR 97121.

Densities of *Corophium* spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area O-34.0; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect compared to stations along the 15-m Table 2. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area O-34.0 in the lower Columbia River, July and October 1994 and January and April 1995. Five stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate	Month	3	0.49	0.689
density (log. (value	Transect	1	17.14	0.000*
+ 1)), total	Total	39		
Corophium spp. density	Month	3	0.82	0.492
$(\log_{10}(value + 1))$	Transect	1	19.59	0.000*
(510(Total	39		
Diversity (H)	Month	3	1.94	0.143
	Transect	1	0.00	0.953
	Total	39		
Equitability (E)	Month	3	2.08	0.122
(=)	Transect	1	9.51	0.004*
	Total	39		

outside of the area in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth deviation (SD) is also shown for each density. Odd- and even-numbered stations were located about 15 and of the river. Generally, each density is the mean of 10 replicate samples collected at a station; the standard Benthic invertebrate densities (number/m²) at Beach Nourishment Area O-34.0 and two stations (1 and 2) 30 m, respectively, from the high tide mark on the beach. Table 3.

		Ju	<u>1</u> y	octo	ber	Janu	ary	Api	
Area	sta.	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD
0-34.0	-	16,836	8,809	11,425	2,183	2,577	1,765	33,501	8,446
0-34.0	7	4,553	5,010	21,131	11,925	2,233	1,086	2,577	1,343
Mean		10,694		16,278		2,405		18,039	
0-34.0	m	2,663	2,607	3,608	1,934	1,718	1,280	1,374	724
0-34.0	4	5,927	3,301	23,622	7,886	93,974	25,412	66,658	8,965
0-34.0	ß	5,068	2,160	16,664	6,644	6,271	2,027	35,734	6,632
0-34.0	9	71,382	31,529	75,076	53,620	73,530	63,438	96,722	33,014
0-34.0	7	5,841	3,359	5,154	2,218	1,288	928	3,608	2,555
0-34.0	œ	26,629	12,958	27,745	9,651	51,625	13,463	35,820	11,142
0-34.0	6	344	601	258	415	344	444	0	0
0-34.0	10	4,381	2,819	6,528	2,722	3,350	6,120	430	607
0-34.0	11	3,007	2,783	4,381	2,933	3,951	2,112	1,374	1,526
0-34.0	12	15,891	6,570	31,697	13,536	56,407	12,201	11,768	3,190
Mean		14,113		19,473		29,246		25,349	

"Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area O-34.0 and two stations (1 and 2) outside of the area in the lower Columbia River, July 1994 through April 1995. In the miles from the mouth of the river. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. Table 4.

Area Sta 0-34.0 1 0-34.0 2	NO				1000000			Jalluar J				
0-34.0 1 0-34.0 2	1. taxa	н	Þ	No. taxa	н	ម	No. taxa	Ш	ы	No. taxa	н	ы
0-34.0 2	σ	1.02	0.32	7	1.33	0.47	ω	2.53	0.84	σ	0.87	0.27
	2	1.96	0.70	7	1.16	0.41	6	2.92	0.92	L	2.42	0.86
lean	00	1.49	0.51	7	1.25	0.44	œ	2.72	0.88	Ø	1.64	0.56
0-34.0 3	Ŋ	1.80	0.78	ß	1.67	0.72	9	1.98	0.77	9	2.13	0.82
0-34.0 4	7	2.51	06.0	6	1.78	0.56	11	0.83	0.24	12	1.06	0.30
0-34.0 5	10	2.33	0.70	10	2.04	0.61	2	2.69	0.96	15	1.57	0.40
0-34.0 6	σ	0.75	0.24	17	1.29	0.31	12	1.27	0.35	15	1.09	0.28
0-34.0 7	4	1.30	0.65	4	1.65	0.82	9	2.23	0.86	4	1.49	0.75
0-34.0 8	14	2.11	0.55	œ	2.16	0.72	11	0.82	0.24	12	1.36	0.38
0-34.0 9	2	0.81	0.81	N	0.92	0.92	7	0.81	0.81	0	0.00	0.00
0-34.0 10	8	2.03	0.68	7	2.33	0.83	4	1.32	0.66	2	0.72	0.72
0-34.0 11	4	1.60	0.80	5	1.22	0.53	4	1.16	0.58	4	1.19	0.59
0-34.0 12	6	1.99	0.63	15	1.99	0.51	15	1.64	0.42	7	1.33	0.48
Mean	2	1.72	0.67	œ	1.71	0.65	80	1.48	0.59	80	1.19	0.47

11

1994 through April 1995. Five stations were sampled along both the 15-m and 30-m transects in the beach beach. Each density represents the mean of all samples collected along a particular transect. Any addition Nourishment Area O-34.0 and two stations (1 and 2) outside of the area in the lower Columbia River, July nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the Table 5. Mean densities (number/m²) and standard deviations (SD) of benthic invertebrates collected at Beach discrepancies in totals are due to rounding.

	Jul		Octob	er	Janua	ry	Apri	-	
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
		BEACH	NOUR I SHMEN	T AREA (1	5-m)				
	906	689	567	1.106	189	359	172	521	
Nemer Lea			0	0	17	122	0	0	
Nema comor pira			120	460	120	388	498	852	
Turbertata Olirochaeta	1.220	1.956	842	1,131	361	651	1,185	1,955	
Ultyoonaca Fluminicola virana	309	1.080	292	663	189	529	0	0	
corbicula fluminea	550	663	1.873	1,914	928	1,645	464	761	
Disiding sho	0	0	0	0	0	0	17	122	
retracoda	17	122	34	170	0	0	309	710	
Ustracoua Huslella artera	17	122	34	243	0	0	52	206	
Corophium salmonis	498	1,345	1,873	3,785	464	871	5,291	10,891	
Corophium spinicorne	0	0	0	0	0	0	80	515	
Harpacticoida	0	0	17	122	0	0 0	11	771	
chironomidae larvae	120	348	17	122		- -	4°	0/1	
Chironomidae pupae	17	122	0	0					
Ceratopogonidae larvae	69	235	326	883	447	8/9	047	101	
Trichoptera pupae	0	0	0	0			11	771	
Ephemeroptera nymph	0	0	0	0	0		1T	771	
collembola adult	258	986	0	0	0	0	2		
Hydracarina	0	0	17	122	•	0	77	122	
rotal	3,384	3,082	6,013	6,565	2,714	2,594	8,418	14,196	

Table 5. Continued.

	Ju	Ly	octol	Der	Janua	ry	Apri		
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
		BEA	CH NOURISH	MENT AREA	(30-m)				
	CVV L	1 678	1 976	3.229	771	2,314	344	694	
Nemertea	L, 110	122	0	0	0	0	0	0	
Nematomorpha	1551	376	309	667	210	512	344	950	
Turbellaria		100	252	206	0	0	0	0	
Neanthes limnicola	11 000	78 105	13 795	31.263	14.200	34,732	17,575	34,645	
oligochaeta		0	21	122	0	0	17	122	
HITUQINEA					35	172	0	0	
Juga plicifera		042	1.134	1.756	421	896	258	434	
FILINITICOLA VIETA			75-1-	170	0	0	0	0	
Vorticitex errusus			17	122	0	0	0	0	
BIVALVIA	0 1 1	1 500	6 974	7.587	2.875	3,269	1,718	2,289	
Corbicula rluminea	001 1		200	616	210	755	481	1,277	
.dds mntpisid	223	1 204	240	522	578	1,207	412	954	
Ostracoda	100	5 C 7 I T	VE	170	105	334	206	564	
Hyalella azteca		202			0	0	0	0	
Corophium spp.	T T D D	091 1	6 DEA	6 394	33.834	32.951	18,537	22,043	
Corophium salmonis	590'0	60T 1	F 00 1 0		403	746	515	266	
Corophium spinicorne		001			0	0	86	313	
Pontoporela noyl	nois 17	122	0	0	0	0	0	0	
Ramettogammatus oregone	103	374	86	398	193	1,231	0	0	
ASELLUS OCCIDENCALLS			103	374	18	123	0	0	
Harpacticolda	1 237	1.666	1.100	1,971	842	2,003	1,185	2,242	
Clittollomitude tarvae	09	235	52	206	0	0	0	0	
Cultonomidae pupae	001	348	309	689	316	600	430	700	
ceracopoyonidae tarvae			155	449	35	172	17	122	
Trichopuera rarvae		c	69	340	123	351	137	402	
Ephiemeropreta nympu Hydracarina	69	293	172	388	140	405	17	122	
Total	24,842	29,022	32,934	33,464	55,308	43,312	42,280	39,010	

	-
2	5
	4
	-
1	
•1	
1	-
	Ξ
	-
C	٦
-	-
	-
ч	0
	17
_	5
1	0
-	Ξ
	-0

	Ju	1y	octol	ber	Janua	ry	Apri	1	
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
		OUTSIDE 0	F BEACH NO	URISHMENT	AREA (15-m	0			
							010		
Nemertea	86	272	0	0	0	0	258	080	
The second se	86	272	0	0	258	415	344	124	
Monther limnicols	c	0	86	272	0	0	0	0	
NealIclies IIIIIIICOIA	1 890	2.057	344	601	601	910	1,546	975	
Ullyochaeca Fliminicola mirene	0	0	258	580	86	272	0	0	
rianticota vitens	258	415	2.921	1.471	430	607	945	1,429	
contrata anitaco	13.830	7.591	7.645	2,511	859	992	29,292	8,103	
corophium suinicorne	86	272	86	272	172	362	344	724	
coropiral spirit	344	444	0	0	86	272	98	272	
Poncoportata noy1	172	362	86	272	86	272	430	607	
Ceratopogonidae larvae	86	272	0	0	0	•	258	415	
motal	16.836	8,808	11,425	2,182	2,577	1,765	33,501	8,446	
TOCAT									
		OUTSIDE C	OF BEACH NO	URISHMENT	AREA (30-II	(1			
	2 405	102 4	c	0	515	601	601	580	
Nemertea	00# 17	10/12	86	272	344	444	172	362	
Turbettalta Wosnthes limnicola		00	0	0	172	362	0	0	
Neanches IIIIIICOID	430	607	1,117	1,406	86	272	601	707	
Fluminicola virens	86	272	1,374	1,864	258	415	0	0	
Corbicula fluminea	86	272	1,374	1,471	344	601	173	945	
Corophium salmonis	945	1,028	16,750	10,491	86	272	258	415	
Harpacticoida	86	272	•	0	0	0			
Chironomidae larvae	515	830	344	601	98	212	98	717	
ceratopogonidae larvae	0	0	86	272	344	444	QD	212	

14

1,343

2,577

1,086

2,233

11,924

21,131

5,010

4,553

Total

transect (Tables 2 and 5). Mean densities of *Corophium* spp. at stations along the 15-m transect ranged from 464 organisms/m² in January 1995 to 5,377 organisms/m² in April 1995. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 5,772 organisms/m² in July 1994 to 34,237 organisms/m² in January 1995 (Table 5). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 2). Mean densities of *Corophium* spp. along the 15-m transect in the undisturbed area (Station 1) outside of the beach area were higher than mean densities at stations along the 15-m transect in the beach nourishment area (Table 5). With the exception of October 1994, mean densities of *Corophium* spp. along the 30-m transect in the undisturbed area (Station 2) outside of the beach area were lower than mean densities at stations along the 30-m transect in the beach nourishment area.

Diversity (H) was not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area O-34.0 (Table 2). Mean H values ranged from 1.19 in April 1995 to 1.72 in July 1994 (Table 4). Equitability (E) was not significantly different (P > 0.05) between months; however, it was significantly higher (P < 0.05) at stations along the 15-m transect (mean = 0.69) than at stations along the 30-m transect (mean = 0.50) (Tables 2 and 4). Diversity and Equitability did not follow any consistent monthly pattern in comparisons between the beach nourishment area and the undisturbed area outside of the beach nourishment area (Table 4).

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area O-34.0; however, it was significantly higher (P < 0.05) at stations along the 15-m transect (mean = 0.39 mm) than at stations along the 30-m transect

(mean = 0.26 mm) (Table 6). Mean median grain size in the beach nourishment area ranged from 0.31 mm in January 1995 to 0.33 mm in the other 3 months. Both percent silt/clay and percent volatile solids did not vary significantly between months (Kruskal-Wallis, P > 0.05). Mean percent silt/clay ranged from 7.2% in July 1994 to 10.0% in April 1995, and mean percent volatile solids ranged from 0.8% in January and April 1995 to 1.3% in July 1994 (Table 6). At stations along the 15-m transect in the beach nourishment area, percent silt/clay and percent volatile solids were significantly lower (Kruskal-Wallis, P < 0.05) than at stations along the 30-m transect. Mean median grain size was lower in the undisturbed area outside of the beach nourishment area compared to the beach nourishment area (Table 6). No statistical analysis was performed because only two stations were sampled in the undisturbed area. With the exception of July 1994, mean percent silt/clay values in the undisturbed area outside of the beach area were lower than mean values in the beach nourishment area. Mean percent volatile solids were 2.0% or less for both the undisturbed area and the beach nourishment area (Table 6).

Beach Nourishment Area W-40.9

Benthic Invertebrates

At Beach Nourishment Area W-40.9, benthic invertebrate densities (total) were not significantly different between months (ANOVA, P > 0.05) (Table 7); the lowest mean density occurred in July 1994 (9,635 organisms/m²) and the highest in January 1995 (25,426 organisms/m²) (Table 8). Benthic invertebrate densities were significantly different between the 15-m and 30-m transects (P < 0.05), with the highest densities generally occurring at stations along the 30-m transect (Tables 7 and 8).

Table 6. Sediment characteristics at Beach Nourishment Area O-34.0 and two stations (1 and 2) outside of the area in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river.

		Medi	ian grai	in size	(uuu)		silt/	clay (?		Vo	latile	solids	(8)
Area	sta.	Jul	Oct	Jan	Apr	Jul	Oct	Jan	Apr	Jut	oct	Jan	Apr
0-34.0	I	0.04	0.15	0.17	0.17	76.1	7.3	2.9	12.2	3.4	1.6	0.4	0.5
0-34.0	2	0.18	0.17	0.17	0.17	1.9	6.5	1.7	1.5	0.7	0.6	0.5	0.5
Mean		0.11	0.16	0.17	0.17	39.0	6.9	2.3	6.8	2.0	1.1	0.4	0.5
0-34.0	e	0.55	0.67	0.40	0.54	0.5	0.3	0.3	0.4	0.4	0.6	0.2	0.3
0-34.0	4	0.38	0.38	0.36	0.39	1.1	0.4	1.2	2.6	0.6	9.0	0.5	0.5
0-34.0	S	0.39	0.33	0.39	0.32	0.3	3.6	0.5	9.2	1.1	6.0	0.6	0.8
0-34.0	9	0.04	0.04	0.04	0.04	66.3	72.5	68.1	83.5	4.3	4.2	3.4	3.7
0-34.0	7	0.41	0.42	0.34	0.43	0.3	0.5	0.4	0.6	0.6	0.5	0.4	0.4
0-34.0	80	0.36	0.29	0.35	0.34	2.2	7.0	1.5	0.7	0.8	0.9	0.2	0.5
0-34.0	6	0.27	0.32	0.29	0.29	0.1	0.1	1.5	0.7	3.8	0.5	0.4	0.2
0-34.0	10	0.26	0.24	0.28	0.31	0.5	4.8	0.4	0.2	0.6	0.6	0.7	0.5
0-34.0	11	0.35	0.33	0.39	0.33	0.3	0.2	0.4	0.4	0.5	0.5	0.7	0.5
0-34.0	12	0.31	0.24	0.29	0.30	0.9	4.8	2.3	1.4	0.7	1.3	0.8	0.5
Mean		0.33	0.33	0.31	0.33	7.2	9.4	1.7	10.0	1.3	1.1	0.8	0.8

Table 7. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area W-40.9 in the lower Columbia River, July and October 1994 and January and April 1995. Three stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate	Month	3	0.40	0.752
density (log. (value	Transect	1	17.51	0.001*
+ 1)), total	Total	23		
Coronhium spn. density	Month	3	0.39	0.763
$(\log (value + 1))$	Transect	1	13.71	0.002*
(10g ₁₀ (value + 1))	Total	23		
Diversity (H)	Month	3	0.48	0.700
Diversicy (m)	Transect	1	1.43	0.250
	Total	23		
Fouitability (E)	Month	3	0.57	0.646
Equicability (1)	Transect	1	3.28	0.089
	Total	23		

number refers to the approximate location in river miles from the mouth of the river. Generally, each density is Table 8. Benthic invertebrate densities (number/m²) at Beach Nourishment Area W-40.9 in the lower Columbia River, density. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide the mean of 10 replicate samples collected at a station; the standard deviation (SD) is also shown for each July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding mark on the beach.

		Ju	ly	octol	ber	Janu	ary	Apr	11
Area	sta.	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m²	SD
W-40.9	Ţ	258	415	1,031	1,056	515	601	1, 0,31	887
W-40.9	3	13,400	3,488	21,389	6,174	76,880	15,788	63,088	9,624
W-40.9	e	601	580	1,718	1,811	515	601	601	815
W-40.9	4	30,666	16,974	10,909	4,010	6,185	3,707	1,546	887
W-40.9	2	1,203	1,228	8,246	3,951	35,734	10,117	12,284	6,630
W-40.9	9	11,682	4,708	17,523	11,979	32,728	6,485	37,022	8,594
Mean		9,635		10,136		25,426		19,262	

The mean numbers of taxa/categories collected in the beach nourishment area were similar for each month, ranging from six to seven (Table 9). Major benthic invertebrate taxa collected in the beach nourishment area included nemerteans, oligochaetes, *Corbicula fluminea*, and *Corophium salmonis* (Table 10).

Densities of *Corophium* spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area W-40.9; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect compared to stations along the 15-m transect (Tables 7 and 10). Mean densities of *Corophium* spp. at stations along the 15-m transect ranged from 143 organisms/m² in July 1994 to 9,879 organisms/m² in January 1995. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 10,050 organisms/m² in July 1994 to 30,609 organisms/m² in January 1995 (Table 10). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 3).

Diversity (H) and Equitability (E) were not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area W-40.9 (Table 7). Mean H values ranged from 1.31 in January 1995 to 1.72 in October 1994, and mean E values ranged from 0.58 in January 1995 to 0.76 in July 1994 (Table 9).

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area W-40.9; however, it was significantly higher (P < 0.05) at stations along the 15-m transect (mean = 0.37 mm) compared to stations along the 30-m transect (mean = 0.32 mm) (Table 11). Mean median grain size in the beach nourishment area ranged from 0.33 mm in January 1995 to 0.36 mm in October 1994. Percent silt/clay was not significantly different between months (Kruskal-Wallis, P > 0.05), but it was

Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area W-40.9 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. beach. Table 9.

		-	July	5		October			January			April	1
Area	sta.	No. taxa	н	ы	No. taxa	н	ធ	No. taxa	Н	R	No. taxa	ш	ы
W-40.9	1	e	1.58	1.00	e	1.38	0.87	7	0.65	0.65	Q	2.13	0.82
W-40.9	7	6	2.09	0.66	œ	1.07	0.36	6	0.65	0.20	7	0.64	0.23
W-40.9	m	m	1.45	0.91	4	1.96	0.98	m	1.58	1.00	ю	1.38	0.87
W-40.9	4	6	1.90	0.60	7	1.76	0.63	1	2.42	0.86	80	2.77	0.92
W-40.9	ß	e	1.26	0.80	80	1.96	0.65	10	1.05	0.32	9	0.54	0.21
W-40.9	9	80	1.73	0.58	10	2.18	0.66	σ	1.52	0.48	10	1.93	0.58
Mean		9	1.67	0.76	7	1.72	0.69	2	1.31	0.58	7	1.56	0.60

sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were Nourishment Area W-40.9 in the lower Columbia River, July 1994 through April 1995. Three stations were located about 15 and 30 m from the high tide mark on the beach. Each density represents the mean of all samples collected along a particular transect. Any addition discrepancies in totals are due to rounding. Table 10. Mean densities (number/m²) and standard deviations (SD) of benthic invertebrates collected at Beach

		BEACH	NOUR I SHMENT	C AREA (15-m)			
	c	c	C	0	29	157	29	157
Nemertea		157		0	0	0	0	0
Nematomorpha			66	157	143	396	57	218
Turbellaria	215	617	1.088	1.295	1.288	1,884	114	373
OTIGOCHAELA			60	157	0	0	0	0
Planorpidae				0	29	157	0	0
Lymnaea spp.			60	157	200	488	86	262
STATTA PTOJUTUTATA			60	157	0	0	0	0
vorticitex erras	17.0	116	1 374	2.351	601	1,109	200	433
Corbicula riuminea	EVI	205	2173	1.066	9,850	14,951	4,066	6,384
coroprim saluous				0	29	157	0	0
coropnium spinicorne			0 0	0	0	0	29	157
Pontoporeia noyi			• c	00	29	157	0	0
Diptera pupae	000	157	315	764	57	218	29	157
Ceratopogoniaae iaivae Trichoptera pupae	0	0	0	0	0	0	29	157
Total	687	885	3,665	4,141	12,255	17,808	4,638	6,660

23

1

SD

No./m²

SD

No./m²

SD

No./m²

SD

No./m²

Taxon

January

october

July

April

Table 10. Continued.

	lut		octobe	er	Janu	ary	Apri	1	
Taxon	No./m ²	sD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
			-			-			
		BEACH	NOUR I SHMEN	T AREA (30-m)				
		1 005	659	1.001	1.317	1,897	563	736	
Nemertea	2,034	5 C C C C T T		1991	172	350	296	619	
Turbellaria	0,00	2 476	1 489	1 371	4.266	4.277	2,992	2,583	
oligochaeta	2,803	C1417	T , TAN	1 740	458	627	385	711	
Fluminicola virens	1,001	1,041	815 L	2.230	1.346	1,328	1,807	2,253	
corbicula fluminea	007	900	62	157	0	0	0	0	
Ostracoda	140		0	0	29	157	0	0.00	
Hyalella azteca	10.050	8.021	10,795	6,579	30,380	30,851	25,533	24,292	
Corophium sainicorne	0	0	29	157	229	201	107	2.401	
Pontoporeia hoyi	0	0	0 0	00	000	157	0	0	
Harpacticoida	0	0				0	89	266	
chironomidae larvae	258	460			0	0	0	0	
Chironomidae pupae	C11	621	1.288	1,843	372	625	267	519	
Ceratopogonidae laivae	10	0	57	218	•	0	9		
ny ut avai tilla									

24

26,468

32,879

31,212

38,597

8,985

16,607

13,270

18,583

Total

stations were located about 15 and 30 m, respectively, from the high tide mark on the beach.

Sediment characteristics at Beach Nourishment Area W-40.9 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Table 11.

		iben	an drai	n size	(IIII)		silt/	clay (%		Vo	latile	solids	(8)
		-				lut	oct	Jan	Apr	Jul	oct	Jan	Apr
Area	sta.	Jul	001	nan	TÂ¥								
		64 0	0 47	0.36	0.37	0.1	0.1	0.2	0.2	0.5	0.8	0.0	0.3
W-40.9			22.0	0.27	0.31	1.4	0.5	1.5	7.9	0.8	0.7	0.4	0.8
W-40.9	N (75.0	0.35	0.36	0.1	0.6	0.3	0.1	0.6	6.0	0.3	0.2
W-40.9	n ·	10.0	96.0	46.0	0.35	1.2	0.3	2.6	0.2	0.7	0.6	0.6	0.4
W-40.9	4	67.0	00		46.0	0.4	0.7	1.5	0.4	0.8	6.0	0.8	0.6
W-40.9	u v	0.29	0.36	0.34	0.28	1.3	5.7	1.1	8.2	6.0	0.8	0.2	0.8
	,	95.0	0.36	0.33	0.34	0.8	1.3	1.2	2.8	0.7	0.8	0.4	0.5

significantly lower at stations along the 15-m transect (Kruskal-Wallis, P < 0.05) than at stations along the 30-m transect. Mean percent silt/clay ranged from 0.8% in July 1994 to 2.8% in April 1995 (Table 11). Percent volatile solids were significantly different between months (Kruskal-Wallis, P < 0.05), but not significantly different between 15-m and 30-m transects (Kruskal-Wallis, P > 0.05). Mean percent volatile solids ranged from 0.4% in January 1995 to 0.8% in October 1994 (Table 11).

Beach Nourishment Area W-43.8

Benthic Invertebrates

At Beach Nourishment Area W-43.8, benthic invertebrate densities (total) were not significantly different between months (ANOVA, P > 0.05) (Table 12); the lowest mean density occurred in July 1994 (3,060 organisms/m²) and the highest in January 1995 (27,273 organisms/m²) (Table 13). Benthic invertebrate densities were significantly different between the 15-m and 30-m transects (P < 0.05), with the highest densities generally occurring at stations along the 30-m transect (Tables 12 and 13).

The mean numbers of taxa/categories collected in the beach nourishment area were similar for each month, ranging from six to seven (Table 14). Major benthic invertebrate taxa collected in the beach nourishment area included nemerteans, oligochaetes, *Corbicula fluminea*, *Corophium salmonis*, and Ceratopogonidae larvae (Table 15).

Densities of *Corophium* spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area W-43.8; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect compared to stations along the 15-m transect (Tables 12 and 15). Mean densities of *Corophium* spp. at stations along the 15-m

Table 12. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area W-43.8 in the lower Columbia River, July and October 1994 and January and April 1995. Four stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate density (log ₁₀ (value + 1)), total	Month Transect T <mark>otal</mark>	3 1 31	0.38 7.42	0.771 0.012*
Corophium spp. density (log ₁₀ (value + 1))	Month Transect Total	3 1 31	1.01 7.30	0.404 0.012*
Diversity (H)	Month Transect Total	3 1 31	5.58 0.30	0.005* 0.591
Equitability (E)	Month Transect Total	3 1 31	4.51 1.66	0.012* 0.210
number refers to the approximate location in river miles from the mouth of the river. Generally, each density Benthic invertebrate densities (number/m²) at Beach Nourishment Area W-43.8 in the lower Columbia River, is the mean of 10 replicate samples collected at a station; the standard deviation (SD) is also shown for each density. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding mark on the beach. Table 13.

		Jul	, Y	octok	Der	Janu	ary	Apr	[]
Area	Sta.	No./m ²	SD	No./m ²	SD	No./m ²	SD	Nо./m ²	SD
W-43.8	1	1,718	859	8,113	2,652	1,288	1,581	2,749	1,504
W-43.8	7	4,639	2,333	14,221	7,252	1,288	928	4,467	3,359
W-43.8	m	1,031	1,391	601	580	86	272	430	730
W-43.8	4	4,896	3,032	18,382	4,691	48,705	25,119	64,854	15,098
W-43.8	ъ	1,718	1,620	3,178	2,106	60,902	24,462	1,288	1,090
W-43.8	9	3,350	1,485	18,125	7,112	86	272	43,379	12,109
W-43.8	7	859	1,620	773	752	57,123	12,417	773	634
W-43.8	œ	6,271	6,630	13,744	6,567	48,705	14,482	38,483	7,617
Mean		3,060		9,642		27,273		19,553	

29

Table 14. Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area W-43.8 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. and the succeeding number refers to the approximate location in river miles from the mouth of the river.

			July			October			January			April	1
Area	sta.	No. taxa	Н	ы	No. taxa	н	ы	No. taxa	Н	ы	No. taxa	н	ы
W-43.8	-	'n	1.95	0.84	ور	1.73	0.67	2	1.77	0.76	4	1.64	0.82
W-43.8	7	œ	2.63	0.88	9	1.70	0.66	7	0.97	76.0	9	2.15	0.83
W-43.8	m	ŝ	1.95	0.84	4	1.84	0.92	1	0.00	0.00	2	0.97	0.97
W-43.8	4	80	2.51	0.84	11	1.85	0.54	80	0.84	0.28	10	1.09	0.33
W-43.8	ŋ	ß	1.91	0.82	ß	1.65	0.71	6	1.31	0.41	9	2.44	0.94
W-43.8	9	7	2.37	0.84	10	2.15	0.65	г	0.00	0.00	æ	1.65	0.55
W-43.8	7	9	2.16	0.84	4	1.45	0.72	10	1.42	0.43	4	1.45	0.72
W-43.8	œ	ß	1.24	0.53	œ	2.39	0.80	10	1.94	0.58	10	1.83	0.55
Mean		9	2.09	0.80	٢	1.85	0.71	9	1.03	0.43	9	1.65	0.71

m ²) and standard deviations (SD) of benthic invertebrates collected at Beach	.8 in the lower Columbia River, July 1994 through April 1995. Four stations were	5-m and 30-m transects in the beach nourishment area; these parallel transects were	m from the high tide mark on the beach. Each density represents the mean of all	a particular transect. Any addition discrepancies in totals are due to rounding.
Mean densities (number/m ²) and stan	Nourishment Area W-43.8 in the low	sampled along both the 15-m and 30-	located about 15 and 30 m from the l	samples collected along a particular t
Table 15.				

	Jul	×	Octobel		Janu	ary	APLI		
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
		BEACH	NOUR I SHMENT	AREA	(15-m)				
Nemertea	220	548	198	416	430	953	279	656	
Turbellaria	0	0	22	138	279	563	236	476	
oligochaeta	308	502	220	471	880	1,436	43	190	
Hirudinea	0	0	22	138	0	0	0	0	
Fluminicola virens	44	192	22	138	880	1,396	43	272	
Corbicula fluminea	419	707	1,079	1,497	2,255	2,967	22	136	
Corophium salmonis	132	504	308	638	22,591	25,158	494	1,027	
Corophium spinicorne	22	138	0	0	1,181	1,658	0	0	
Harpacticoida	0	0	0	0	22	136	0	0	
Tipulidae larvae	0	0	0	0	22	136	0	0	
chironomidae larvae	22	138	0	0	64	229	0	0	
Ceratopogonidae larvae	154	388	1,167	2,118	1,246	2,358	193	363	
Total	1,322	1,419	3,040	3,429	29,850	32,381	1,310	1,348	

31

I

Table 15. Continued.

	Jul	٨	octob	er	Janué	ary	Apri	
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD
		BEACH	NOURISHMEN	IT AREA (3	(Ⅲ-0)			
			006 1	7 047	1.095	3,836	1,654	2,959
Nemertea	601	1,641 136	154	388	365	970	601	807
Turbellaria	4 6	126	0	0	0	0	0	
Neanthes limnicola	1 740	3.698	1,894	2,160	1,310	2,175	3,071	3,130
oligocnaeta	22	136	44	192	0	0 0 0 0	150	384
Gastropoda	107	443	705	1,305	64	677 0	213 0	2 517
Fluminicola vitens	601	874	2,247	1,714	1,976	3,021	21012	272
pisidium spb.	0	0	0 0			00	0	0
ostracoda	22	136				0	0	0
Corophium spp.	129	415	101 1	202 2	18.103	22.309	26,736	21,234
corophium salmonis	859	559	16111	138	687	1,186	1,654	3,338
Corophium spinicorne			10	0	0	0	22	136
Pontoporeia hoyi			110	291	64	301	0	0 1
Harpacticolda		136	66	232	0	0	129	400 F
Chironomidae Larvae	27	842	1.828	1,410	1,009	1,480	1,224	100'1
Ceratopogonidae larvae		0	0	0	22	136		2
nyur acar mia						000 00	307 TE	24.148
Total	4,789	3,890	16,167	6,574	24,030	670'07	201112	
				-				

transect ranged from 154 organisms/m² in July 1994 to 23,772 organisms/m² in January 1995. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 988 organisms/m² in July 1994 to 28,390 organisms/m² in April 1995 (Table 15). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 4).

Diversity (H) and Equitability (E) were significantly different (ANOVA, P < 0.05) between months, but not between transects in Beach Nourishment Area W-43.8 (Table 12). Mean H values ranged from 1.03 in January 1995 to 2.09 in July 1994, and mean E values ranged from 0.43 in January 1995 to 0.80 in July 1994 (Table 14).

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area W-43.8. Mean median grain size in the beach nourishment area ranged from 0.39 mm in July and October 1994 to 0.41 mm in January 1995 (Table 16). Percent silt/clay was not significantly different between months (Kruskal-Wallis, P > 0.05), but was significantly lower at stations along the 15-m transect (Kruskal-Wallis, P < 0.05) than at stations along the 30-m transect. Mean percent silt/clay ranged from 0.4% in January and April 1995 to 1.6% in October 1994 (Table 16). Percent volatile solids were significantly different between months (Kruskal-Wallis, P < 0.05), but not significantly different between 15-m and 30-m transects (Kruskal-Wallis, P > 0.05). Mean percent volatile solids ranged from 0.3% in January 1995 to 1.1% in July 1994 (Table 16).

Figure 4. Number of *Corophium* spp./m² by station at Beach Nourishment Area W-43.8 in the lower Columbia River. Sampling was conducted in July and October 1994 and January and April 1995. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach.

Sediment characteristics at Beach Nourishment Area W-43.8 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Table 16.

		Medi	an grai	n size	(mm)		silt/0	clay (%		Vo	latile	solids	(8)
Area	sta.	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr
8 F 4 - W	-	0.39	0.38	0.34	0.34	0.3	0.4	0.1	0.2	2.8	0.4	0.4	0.4
8 67-W	0	0.36	0.33	0.33	0.39	0.3	4.3	0.1	0.6	0.7	0.5	0.5	0.5
W-43.8	I M	0.40	0.33	0.35	0.36	0.7	0.5	0.3	0.1	0.7	9.0	0.2	0.5
8 54-54	4	0.25	0.45	0.55	0.57	8.6	2.9	0.5	0.3	2.0	0.5	0.5	0.4
a c 7 - 24	· .	0.38	0.37	0.45	0.34	0.0	0.2	0.4	0.1	0.7	0.6	0.3	0.3
	n u		0.37	0.34	0.41	0.2	3.5	0.1	0.6	0.5	0.3	0.0	0.7
0.04-W	2 6	0.34	0.35	0.43	0.39	0.3	0.3	1.1	0.2	0.6	0.7	0.0	0.5
W-43.8	- 00	0.44	0.51	0.48	0.44	1.3	0.8	1.0	1.4	0.7	0.5	0.5	0.7
Mean		0.39	0.39	0.41	0.40	1.5	1.6	0.4	0.4	1.1	0.5	0.3	0.5

35

Beach Nourishment Area O-44.0

Benthic Invertebrates

At Beach Nourishment Area O-44.0, benthic invertebrate densities (total) were not significantly different between months (ANOVA, P > 0.05) (Table 17); the lowest mean density occurred in October 1994 (2,802 organisms/m²) and the highest in January 1995 (6,826 organisms/m²) (Table 18). Benthic invertebrate densities were significantly different between the 15-m and 30-m transects (P < 0.05), with the highest densities generally occurring at stations along the 30-m transect (Tables 17 and 18).

The mean number of taxa/categories collected in the beach nourishment area in each month was four (Table 19). Major benthic invertebrate taxa collected in the beach nourishment area included oligochaetes, *Corbicula fluminea*, and *Corophium salmonis* (Table 20).

Densities of *Corophium* spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area O-44.0; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect (Tables 17 and 20). Mean densities of *Corophium* spp. at stations along the 15-m transect ranged from 10 organisms/m² in October 1994 to 95 organisms/m² in January and April 1995. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 2,358 organisms/m² in October 1994 to 9,536 organisms/m² in January 1995 (Table 20). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 5).

Diversity (H) and Equitability (E) were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area O-44.0 (Table 17). Mean H values ranged from 1.14 in April 1995 to 1.39 in January 1995, and mean E values ranged from 0.56 in April

Table 17. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area O-44.0 in the lower Columbia River, July and October 1994 and January and April 1995. Nine stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate	Month	3	0.61	0.613
density (log. (value	Transect	1	20.49	0.000*
+ 1)), total	Total	71		
Corophium spp. density	Month	3	0.58	0.628
$(\log_{10}(value + 1))$	Transect	1	30.48	0.000*
(10910(00100 0 1))	Total	71		
Diversity (H)	Month	3	0.57	0.639
Diverbioj (1)	Transect	1	12.80	0.001*
	Total	71		
Equitability (E)	Month	3	1.06	0.373
rdereestrel (-)	Transect	1	0.66	0.419
	Total	71		

mean of 10 replicate samples collected at a station; the standard deviation (SD) is also shown for each density. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on Benthic invertebrate densities (number/m²) at Beach Nourishment Area O-44.0 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Generally, each density is the the beach. Table 18.

		Jul	, Y	octol	ber	Janu	ary	Apri	1
Area	sta.	Nо./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD
0-44.0	1	172	362	945	945	1,031	975	3,694	2,220
0-44.0	10	15.977	4.567	14,603	5,106	48,018	11,995	34,102	5, 784
0 0 0	1 (1	167 6	2.307	4.381	3,632	1,546	789	3,178	1,767
0.11-0		8 075	4.638	3.350	2.271	2,004	1,288	4,209	2,271
	• 11	258	415	1.374	1.774	430	453	945	752
0.44-0	n u	1 295	1.811	12.112	4.517	31,267	9,937	26,972	5,061
0.11-0		1 890	2.057	687	543	773	854	859	573
0.44-0	- 0	115	601	859	906	1.203	1,008	2,062	1,414
0-44.0	0 0	010		1 274	830	3.522	4.625	859	810
0-44.0	, c	2/1 01		130	2 865	23.794	4.343	32,728	6,421
0-44.0		020121	203	101	379	344	444	86	272
0-44.0	1:	004	100	86	610	515	830	430	607
0-44.0	1 -			172	362	687	887	86	272
0-44.0	2.			270	415	1 031	1.610	344	601
0-44.0	14	007	11	001	0.76	177	367	86	272
0-44.0	15	•	-	7/1	205			211 1	1 210
0-44.0	16	773	634	1,203	1,630	113	701	177 17	017/1
0-44.0	17	344	444	172	362	258	580	0	0
		CCL E	2 648	1.374	1.008	5.498	1.471	1,031	543
0-44.0	0	22110	050/7						
				CU8 C		6.876		6.266	
Mean		2,303		70017		0.40 10			

the succeeding number refers to the approximate location in river miles from the mouth of the river. Odd- and Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area O-44.0 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. Table 19.

			July			October			January			April	1	
Area	sta.	No. taxa	н	ជ	No. taxa	н	ы	No. taxa	н	ជ	No. taxa	н	ជ	
0-44.0	-	1	0.00	0.00	4	1.28	0.64	ß	1.96	0.84	S	1.15	0.49	
0-44.0	2	10	2.05	0.62	10	1.49	0.45	11	1.29	0.37	80	0.93	0.31	
0-44.0	e	4	1.89	0.94	9	1.53	0.59	e	1.25	0.79	2	2.39	0.85	
0-44.0	4	6	2.23	0.70	9	2.31	0.89	ß	1.97	0.85	9	1.86	0.72	
0-44.0	5	2	0.92	0.92	4	1.76	0.88	e	1.37	0.86	4	1.82	0.91	
0-44.0	9	L	2.21	0.79	9	1.32	0.51	80	1.18	0.39	2	0.95	0.34	
0-44.0	2	1	0.00	0.00	2	0.81	0.81	2	0.50	0.50	4	1.72	0.86	
0-44.0	80	4	1.79	06.0	e	0.92	0.58	ß	1.87	0.81	e	1.14	0.72	
0-44.0	6	1	0.00	0.00	4	1.80	0.90	2	2.19	0.78	e	1.36	0.86	
0-44.0	10	9	1.69	0.65	80	2.42	0.81	2	1.47	0.52	80	1.10	0.37	
0-44.0	11	e	1.52	0.96	2	1.00	1.00	7	0.81	0.81	1	0.00	0.00	
0-44.0	12	e	1.52	0.96	1	0.00	0.00	4	1.92	0.96	m	1.52	0.96	
0-44.0	13	8	0.72	0.72	8	1.00	1.00	m	1.30	0.82	1	0.00	0.00	
0-44.0	14	e	1.58	1.00	e	1.58	1.00	e	0.82	0.52	m	1.50	0.95	
0-44.0	15	0	0.00	0.00	2	1.00	1.00	2	1.00	1.00	1	0.00	0.00	
0-44.0	16	e	1.22	0.77	e	1.09	0.69	S	2.06	0.89	ო	1.53	0.96	
0-44.0	17	2	1.00	1.00	1	0.00	0.00	2	0.92	0.92	0	0.00	0.00	
0-44.0	18	ß	1.29	0.56	S	2.11	0.91	4	1.17	0.58	4	1.61	0.81	
Mean		4	1.20	0.64	4	1.30	0.70	4	1.39	0.73	4	1.14	0.56	

	Jul	V	octob	er	Janua	ry	Apri	1	
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
		BEACH	NOUR I SHMEN	IT AREA (1	5-m)				
Nemertea	153	570	48	199	162	589	67	391	
Turbellaria	0	0	126	379	67	265	172	391	
oligochaeta	325	925	376	697	296	982	477	1,116	
Corbicula fluminea	124	304	434	1,256	258	522	162	480	
Ostracoda	0	0	10	91	10	06	19	127	
Corophium salmonis	76	306	10	91	95	396	95	374	
Ceratopogonidae larvae	10	91	39	179	86	259	95	374	
collembola adult	0	0	10	91	0	0	0	0	
Hydracarina	9	0	10	61	9	•	0	0	
Total	687	1,339	1,062	1,886	974	1,885	1,088	1,653	

Table 20. Continued.

	Jul	Y	octob	ler	Janu	ary	Apr	11	
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	Nо./m ²	SD	
		BEACH	NOUR I SHMEN	NT AREA (3	<u>(ш-0</u>				
Nemertea	637	1.439	344	726	348	876	95	300	
Nematomorpha	19	182	0	0	0	0	0	0	
Turbellaria	29	156	57	216	174	433	258	624	
Neanthes limnicola	0	0	10	06	0	0	0	0	
oligochaeta	743	1,533	439	1,000	1,390	2,390	954	1,482	
Gastropoda	0	0	38	178	0	0	0	0	
Fluminicola virens	19	128	10	06	10	16	0	0	
Corbicula fluminea	367	592	1,002	1,230	849	1,204	200	408	
Hvalella azteca	0	0	10	06	10	91	10	06	
Eogammarus confervicolus	0	0	10	06	0	0	0	0	
Corophium spp.	145	676	0	0	0	0	0	0	
Corophium salmonis	2.741	3,574	2,348	4,378	9,343	13,561	8,771	12,822	
Corophium spinicorne	10	91	10	16	193	590	439	1,346	
Harpacticoida	19	128	0	0	0	0	0	0	
Chironomidae larvae	48	199	10	06	29	156	143	392	
Ceratopogonidae larvae	357	837	258	553	444	926	534	1,177	
Ephemeroptera nymph	0	0	0	0	10	91	19	181	
Collembola adult	0	0	0	0	0	0	10	06	
Hydracarina	0	0	10	90	0	0	10	06	
Total	5,135	6,351	4,553	5,784	12,798	17,425	11,444	14,636	

1995 to 0.73 in January 1995 (Table 19). Diversity was significantly higher (ANOVA, P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect; however, E was not significantly different between transects.

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area O-44.0. Mean median grain size in the beach nourishment area ranged from 0.37 mm in October 1994 to 0.40 mm in January 1995 (Table 21). Percent silt/clay was not significantly different between months or transects (Kruskal-Wallis, P > 0.05). Mean percent silt/clay ranged from 1.3% in July 1994 and April 1995 to 3.4% in October 1994 (Table 21). Percent volatile solids were significantly different between months (Kruskal-Wallis, P < 0.05), but not significantly different between 15-m and 30-m transects (Kruskal-Wallis, P > 0.05). Mean percent volatile solids ranged from 0.4% in January 1995 to 0.6% in July and October 1994 (Table 21).

Beach Nourishment Area W-45.0

Benthic Invertebrates

At Beach Nourishment Area W-45.0, benthic invertebrate densities (total) were not significantly different between months (ANOVA, P > 0.05) (Table 22); the lowest mean density occurred in October 1994 (8,083 organisms/m²) and the highest in January 1995 (15,884 organisms/m²) (Table 23). Benthic invertebrate densities were significantly different between the 15-m and 30-m transects (P < 0.05), with the highest densities generally occurring at stations along the 30-m transects (Tables 22 and 23).

Table 21. Sediment characteristics at Beach Nourishment Area O-44.0 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river.

		Medi	an grai	in size	(mm)		silt/	clay (%		Vo	latile	solids (8)
Area	sta.	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr
0.00	-	0 47	0.45	0.43	0.43	0.1	0.3	0.5	0.3	0.6	0.4	0.6	0.4
0-44-0	10	60.0	0.29	0.35	0.30	1.8	4.6	2.0	6.2	0.7	6.0	0.2	6.0
0 44-0	1 (*	0.35	0.24	0.39	0.37	0.1	6.5	1.0	0.6	0.5	1,1	0.6	c.0
0-44.0	4	0.33	0.39	0.64	0.67	9.8	0.6	0.3	0.2	1.0	0.7	6.0	9.0
0-44 0	• •	0.38	0.40	0.34	0.41	0.2	0.3	0.3	0.3	0.7	0.4	0.7	9.0
0-44 0		0.51	0.33	0.36	0.41	0.3	9.5	11.2	1.0	0.8	0.7	0.5	9.0
0 000		94.0	0.55	0.40	0.51	0.5	3.2	0.6	0.3	0.6	0.5	0.4	0.4
0.55-0	- α	88.0	9.95	0.34	0.34	0.4	0.3	0.4	0.4	0.6	0.3	0.0	0.5
0.44-0	0 0		0 41	0.43	0.44	1.4	3.6	0.2	0.4	9.0	0.5	0.7	0.5
0-44.0				89.0	0 44	0.3	3.5	0.8	1.7	0.6	0.6	0.7	0.4
0-44.0	2:	10.0			0 22	6.0	18.9	0.5	0.2	0.5	0.9	0.2	0.5
0-44.0	1.	00	67.0		20.0	4.0	0.0	4.0	0.3	0.4	0.6	0.3	0.4
0-44.0	77	0.34	10.04		40.0		0	0.6	2.4	0.7	0.4	0.4	0.4
0-44.0	22			14.0	40	0.4	0.4	0.5	0.4	0.5	0.7	0.3	0.3
0-44.0	* u	14.0	80.00		0.32	3.0	5.4	3.8	3.0	0.6	0.5	0.2	0.5
0-44-0			07.0	DE O	98.0	2.4	2.5	11.2	1.5	0.8	0.5	0.3	0.6
		000	000	0.31	0.30	0.6	0.6	1.0	1.0	0.5	0.6	0.2	0.4
0-44.0	18	0.29	0.30	0.30	0.31	1.0	0.6	6.0	2.9	0.7	0.2	0.6	9.0
Mean		0.39	0.37	0.40	0.39	1.3	3.4	2.0	1.3	0.6	0.6	0.4	0.5

Table 22. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area W-45.0 in the lower Columbia River, July and October 1994 and January and April 1995. Five stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate	Month	3	0.61	0.612
density $(\log_{10}(value + 1))$, total	Transect Total	1 39	21.20	0.000*
Corophium spp. density (log ₁₀ (value + 1))	Month Transect Total	3 1 39	0.30 8.75	0.829 0.006*
Diversity (H)	Month Transect Total	3 1 39	3.30 1.24	0.033* 0.274
Equitability (E)	Month Transect Total	3 1 39	1.78 0.15	0.170 0.705

number refers to the approximate location in river miles from the mouth of the river. Generally, each density Benthic invertebrate densities (number/m²) at Beach Nourishment Area W-45.0 in the lower Columbia River, is the mean of 10 replicate samples collected at a station; the standard deviation (SD) is also shown for each density. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding mark on the beach. Table 23.

		[IJŢ	Ly	octol	ber	Janu	ary	Apr	11
Area	sta.	No./m ²	SD	Nо./m²	SD	No./m ²	SD	No./m ²	sD
W-45.0	1	1,203	1,820	2,319	1,986	3,522	1,786	12,971	6,357
W-45.0	7	39,685	12,334	26,629	7,014	52,570	22,758	46,557	8,066
W-45.0	e	1,718	2,624	1,804	1,309	95	286	515	601
W-45.0	4	11,339	7,912	8,504	5,485	4,638	1,820	8,848	5,186
W-45.0	S	4,581	2,232	7,216	1,679	86	272	2,062	1,008
W-45.0	9	23,536	9,661	11,511	6,718	58,240	10,864	46,471	10,070
W-45.0	7	5,727	3,644	4,553	1,813	4,381	2,160	2,233	1,728
W-45.0	80	9,363	3,997	10,909	2,626	34,274	6,793	18,554	4,778
W-45.0	6	1,031	1,056	859	906	430	607	1,289	730
W-45.0	10	1,241	1,670	6,528	2,782	601	707	945	854
Mean		9,942		8,083		15,884		14,045	

The mean numbers of taxa/categories collected in the beach nourishment area were similar for each month, ranging from six to eight (Table 24). Major benthic invertebrate taxa collected in the beach nourishment area included nemerteans, oligochaetes, *Fluminicola virens*, *Corbicula fluminea*, and *Corophium salmonis* (Table 25).

Densities of *Corophium* spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area W-45.0; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect (Tables 22 and 25). Mean densities of *Corophium* spp. at stations along the 15-m transect ranged from 245 organisms/m² in January 1995 to 2,285 organisms/m² in April 1995. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 4,945 organisms/m² in July 1994 to 23,347 organism/m² in January 1995 (Table 25). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 6).

Diversity (H) was significantly different (ANOVA, P < 0.05) between months, but not significantly different (ANOVA, P > 0.05) between transects in Beach Nourishment Area W-45.0 (Table 22). Mean H values ranged from 1.28 in January 1995 to 2.15 in July 1994 (Table 24). Equitability (E) was not significantly different (ANOVA, P > 0.05) between months or transects (Table 22). Mean E values ranged from 0.53 in January 1995 to 0.78 in July 1994 (Table 24).

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area W-45.0; however, it was significantly higher (P < 0.05) at stations along the 15-m transect (mean = 0.40 mm) than at stations along the 30-m transect (mean = 0.29 mm) (Table 26). The high outlying value for Station 5 in July 1994 was Table 24. Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area W-45.0 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. and the succeeding number refers to the approximate location in river miles from the mouth of the river.

			July			October			January	Ì		April	1
Area	sta.	No. taxa	н	ы	No. taxa	н	ы	No. taxa	н	ы	No. taxa	н	щ
W-45.0	1	ß	2.16	0.93	2	2.16	0.77	7	2.59	0.92	œ	1.41	0.47
W-45.0	7	15	2.53	0.65	13	1.93	0.52	11	0.94	0.27	10	0.73	0.22
W-45.0	'n	4	1.53	0.77	4	1.55	0.77	1	0.00	0.00	m	1.46	0.92
W-45.0	4	7	1.85	0.66	L	2.27	0.81	ß	2.17	0.93	80	2.45	0.82
W-45.0	S	1	2.15	0.77	S	1.33	0.57	г	0.00	0.00	9	1.83	0.71
W-45.0	9	14	2.94	0.77	œ	2.27	0.76	11	1.43	0.41	12	1.28	0.36
W-45.0	٢	10	2.81	0.85	9	1.89	0.73	9	2.02	0.78	9	2.44	0.94
W-45.0	80	10	2.33	0.70	7	2.28	0.81	10	1.52	0.46	8	1.41	0.47
W-45.0	6	e	1.46	0.92	ß	0.92	0.58	m	1.52	0.96	1	0.00	0.00
W-45.0	10	ß	1.70	0.73	S	2.00	0.86	N	0.59	0.59	m	1.44	16.0
Mean		80	2.15	0.78	٢	1.86	0.72	Q	1.28	0.53	9	1.44	0.58

sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were Nourishment Area W-45.0 in the lower Columbia River, July 1994 through April 1995. Five stations were located about 15 and 30 m from the high tide mark on the beach. Each density represents the mean of all samples collected along a particular transect. Any addition discrepancies in totals are due to rounding. Mean densities (number/m²) and standard deviations (SD) of benthic invertebrates collected at Beach Table 25.

	Jul	Y	Octob	er	Janua	ry	Apri	1	
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
				2					1.
		BEACH	NOURISHMEN	NT AREA (1	5-m)				
Nemertea	179	662	155	333	631	1,286	240	650	
Nematomorpha	18	124	0	0	0	0	0	0	
Turbellaria	0	0	52	206	105	334	275	504	
oligochaeta	698	1.013	309	620	105	284	275	660	
Fluminicola virens	197	509	0	0	333	652	189	469	
Corbicula fluminea	734	1.202	1.907	2.170	280	508	498	651	
Ostracoda	18	124	52	206	0	0	17	122	
Corophium spp.	72	298	0	0	0	0	0	0	
Corophium salmonis	286	738	515	868	245	464	2,285	4,821	
Chironomidae larvae	06	265	0	0	0	0	0	0	
Chironomidae pupae	36	174	0	0	0	0	0	0	
Ceratopogonidae larvae	358	1,213	344	776	35	172	34	170	
collembola adult	72	298	0	0	0	0	0	0	
Hydracarina	0	0	17	122	0	0	0	0	
Total	2.756	2,996	3,350	2,762	1,736	2,262	3,814	5,486	

Table 25. Continued.

	Jul	. <u>v</u>	octob	er	Janue	ILY	Apr		
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	1.00
		BEACH	NOURISHMEN	IT AREA (3	(m-O)				
Nemertea	596	1.890	1,580	2,292	825	981	670	1,243	
Nemetemeths	368	1 067	0	0	0	0	0	0	
memia comor pira mirballaria	18	123	34	170	258	528	258	498	
polychaeta Dolychaeta	23	208	0	.0	0	0	0	0	
Neanthes limnicola	0	0	17	122	0	0	17	122	
oligochaeta	6.539	6,784	2,182	2,169	3,127	3,364	1,907	2,413	
Gastropoda	35	172	17	122	17	122	0	0	
.Tuga n'icifera	0	0	17	122	0	0	•	0	
Fluminicola virens	1,665	2,813	601	1,380	447	678	361	674	
Corbicula fluminea	508	700	2,148	1,649	966	1,207	670	890	
Diaidium ann.	53	272	120	425	69	340	17	122	
Ostracoda	473	1,228	0	0	137	438	103	282	
Corophium spb.	877	1,430	0	0	•	0	0	0	
Corophium salmonis	4,050	4,642	5,257	6,038	22,677	22,115	18,949	18, 382	
Corophium spinicorne	18	123	0	0	670	1,088	670	1,486	
Pontoporeia hovi	0	0	0	0	0	0	11	122	
Harpacticoida	18	123	0	0	17	122	11	122	
Diptera pupae	18	123	0	0	0	0	0	0.0	
Chironomidae larvae	1,490	2,409	86	313	137	471	120	348	
Chironomidae pupae	105	377	0	0	0	0	0.0		
Ceratopogonidae larvae	386	842	670	1,155	653	1,049	481	861	
Trichontera larvae	18	123	17	122	0	0	0	0	
Enhemerontera nymph	0	0	34	170	34	170	0	0	
coleontera larvae	53	272	0	0	0	0	0	0	
Hydracarina	18	123	34	170	0	0	17	122	
Total	17,355	15,576	12,816	8,799	30,065	26,534	24,275	20,200	

Figure 6. Number of Corophium spp./m² by station at Beach Nourishment Area W-45.0 in the lower Columbia River. Sampling was conducted in July and October 1994 and January and April 1995. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach.

Sediment characteristics at Beach Nourishment Area W-45.0 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Table 26.

		Medi	an grai	n size	(mm)		silt/	clay (%		Vo	latile	solids	(8)
Area	sta.	Jut	oct	Jan	Apr	Jul	Oct	Jan	Apr	Jul	oct	Jan	Apr
W-45.0	-	0.72	0.57	0.47	0.37	0.6	4.0	1.0	1.4	0.6	0.7	0.6	0.5
W-45.0	5	0.06	0.09	0.07	0.06	52.3	42.1	44.0	54.9	1.2	6.0	1.4	1.4
W-45.0	m	0.50	0.46	0.39	0.40	0.4	0.3	0.6	0.4	0.6	0.5	0.7	0.6
W-45.0	4	0.44	0.38	0.36	0.33	0.3	0.3	0.6	5.0	0.7	0.5	0.5	0.5
W-45.0	ß	16.20	0.35	0.37	0.36	0.3	8.7	0.2	0.3	0.7	0.7	0.0	0.4
W-45.0	9	0.11	0.40	0.36	0.28	43.1	4.4	2.0	24.3	1.0	0.8	0.7	1.1
W-45.0	2	0.33	0.27	0.36	0.47	0.5	5.6	0.5	1.7	7.8	0.5	0.6	0.6
W-45.0	00	0.37	0.35	0.37	0.31	0.8	0.6	2.0	1.0	0.6	0.7	0.5	0.9
W-45.0	6	0.29	0.31	0.30	0.30	1.3	4.6	1.5	1.9	0.7	0.3	0.2	0.6
W-45.0	10	0.35	0.40	0.31	0.33	0.8	1.1	1.3	6.0	3.0	0.7	0.5	0.3
Mean		1.94	0.36	0.34	0.32	10.0	7.2	5.4	9.2	1.7	0.6	0.6	0.7

excluded from the statistical analysis. Mean median grain size in the beach nourishment area ranged from 0.32 mm in April 1995 to 1.94 mm (or 0.35 mm if the outlying value is excluded) in July 1994 (Table 26). Percent silt/clay was not significantly different between months (Kruskal-Wallis, P > 0.05), but it was significantly lower at stations along the 15-m transect (Kruskal-Wallis, P < 0.05) than at stations along the 30-m transect. Mean percent silt/clay ranged from 5.4% in January 1995 to 10.0% in July 1994 (Table 26). Percent volatile solids were not significantly different between months (Kruskal-Wallis, P > 0.05), but they were significantly different between transects (Kruskal-Wallis, P < 0.05). Mean percent volatile solids ranged from 0.6% in October 1994 and January 1995 to 1.7% in July 1994 (Table 26).

Beach Nourishment Area O-45.1

Benthic Invertebrates

At Beach Nourishment Area O-45.1, benthic invertebrate densities (total) were not significantly different between months or transects (ANOVA, P > 0.05) (Table 27); the lowest mean density occurred in October 1994 (1,647 organisms/m²) and the highest in April 1995 (7,838 organisms/m²) (Table 28).

The mean numbers of taxa/categories collected in the beach nourishment area ranged from three to five (Table 29). Major benthic invertebrate taxa collected in the beach nourishment area included oligochaetes, *Corbicula fluminea*, *Corophium salmonis*, and *Corophium spinicorne* (Table 30).

Densities of Corophium spp. were not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area O-45.1 (Table 27). Mean densities

Table 27. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area O-45.1 in the lower Columbia River, July and October 1994 and January and April 1995. Two stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
	in the			
Benthic invertebrate density (log ₁₀ (value + 1)), total	Month Transect Total	3 1 15	0.09 2.13	0.966 0.183
Corophium spp. density (log ₁₀ (value + 1))	Month Transect Total	3 1 15	0.28 1.26	0.837 0.295
Diversity (H)	Month Transect Total	3 1 15	0.90 1.32	0.483 0.284
Equitability (E)	Month Transect Total	3 1 15	0.31 1.40	0.817 0.271

mean of 10 replicate samples collected at a station; the standard deviation (SD) is also shown for each density. Benthic invertebrate densities (number/m²) at Beach Nourishment Area O-45.1 in the lower Columbia River, refers to the approximate location in river miles from the mouth of the river. Generally, each density is the Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number the beach. Table 28.

		Jul	Ly	octob	er	Janu	ary	Apri	1
Area	sta.	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD
0-45.1	1	172	543	172	362	430	607	258	415
0-45.1	5	172	362	344	830	687	887	172	362
0-45.1	m	2,062	1,087	573	960	773	854	344	444
0-45.1	4	10,566	4,111	5,498	3,465	15,032	22,982	30,580	13,703
Mean		3,243		1,647		4,230		7,838	

lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. Table 29. Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area O-45.1 in the

			Julv			october			January			April		
Area	sta.	No. taxa	Н	ы	No. taxa	Н	ы	No. taxa	н	ы	No. taxa	н	ы	1.1
										1				
0-45.1	Ч	7	1.00	1.00	1	0.00	0.00	ო	1.37	0.86	7	0.92	0.92	
0-45.1	2	2	1.00	1.00	2	1.00	1.00	e	1.50	0.95	г	0.00	0.00	
0-45.1	e	9	1.73	0.67	e	1.46	0.92	S	2.20	0.95	e	1.50	0.95	
0-45.1	4	Ŋ	0.89	0.38	ß	1.49	0.64	80	0.78	0.26	9	0.89	0.34	
Mean		4	1.16	0.76	m	66.0	0.64	2	1.46	0.76	m	0.83	0.55	

Table 30. Mean densines (nu Nourishment Area sampled along both located about 15 a samples collected	0.45.1 in the $0.45.1$ in the $15-m$ and $15-m$ and 30 m from along a partial	te lower Co ne lower Co nd 30-m tr m the high cular transe	ueviations olumbia Rive ansects in th tide mark on ct. Any add	ar, July 19 ar, July 19 le beach no it the beach dition disc	94 through <i>I</i> ourishment a h. Each den repancies in	April 1995. Tea; these p sity represent totals are du	Two station arallel transe nts the mean ue to roundii	us were ects were 1 of all ng.	
	July	×	Octob	er	Janu	ary	Apr	11	
Taxon	No./m²	SD	No./m ²	SD	No./m ²	SD	No./m ²	sD	
		BEACH	NOURISHMEN	IT AREA (15-m)				
Nemertea	0	0	06	271	86	264	86	264	
Nematomorpha	43	192	0	0	0	0	00	00	
Turbellaria	0	0	0	0000	129	420		0 0 1	
Oligochaeta	86	264	136	322	47 7 7	192	430	192	
Corbicula fluminea	43	192	00	00	215	472	86	264	
Corophium salmonis	687	817	136	431	43	192	0	0	
Chironomidae larvae	43	192	0	0	0	0	0	0	
Ceratopogonidae larvae	215	473	0	0	43	192	43	192	
Collembola adult	0	0	9	0	43	192	0	2	
Total	1,117	1,280	362	720	601	743	301	420	
		BEACH	NOURISHMEN	AT AREA (<u> 30-т)</u>				
Momortoo	c		c	c	543	192	C	0	
Nemet tea	20	Vac			54	192	43	192	
Nealicijes Illiuriscola Olinochaeta	172	449	386	762	129	315	472	902	
Gastronoda	10	0	43	192	0	0	0	0	
Corbicula fluminea	472	209	816	1,350	301	504	215	382	
Corophium salmonis	4,467	5,196	1,632	2,538	6,700	15,312	12,885	15,328	
Corophium spinicorne	129	315	43	192	472	1,379	1,374	2,483	
chironomidae larvae	0	0	0	0	129	420	386	590	
Ceratopogonidae larvae	43	192	0	0	0	0	0	0	
Hydracarina	0	0	0	0	43	192	0	0	
Total	5,369	6,041	2,921	3,606	7,860	17,456	15,376	18,230	

of *Corophium* spp. at stations along the 15-m transect ranged from 0 organisms/m² in April 1995 to 687 organisms/m² in July 1994. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 1,675 organisms/m² in October 1994 to 14,259 organisms/m² in April 1995 (Table 30). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 7).

Diversity (H) and Equitability (E) were not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area O-45.1 (Table 27). Mean H values ranged from 0.83 in April 1995 to 1.46 in January 1995, and mean E values ranged from 0.55 in April 1995 to 0.76 in July 1994 and January 1995 (Table 29).

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area O-45.1. Mean median grain size in the beach nourishment area ranged from 0.23 mm in July 1994 and April 1995 to 0.24 mm in October 1994 and January 1995 (Table 31). Percent silt/clay was not significantly different between months or transects (Kruskal-Wallis, P > 0.05). Mean percent silt/clay ranged from 22.8% in April 1995 to 24.8% in July 1994 (Table 31). Percent volatile solids were not significantly different between months (Kruskal-Wallis, P > 0.05), but they were significantly lower (Kruskal-Wallis, P < 0.05) at stations along the 15-m transect than at stations along the 30-m transect. Mean percent volatile solids ranged from 1.0% in July 1994 to 1.4% in October 1994 (Table 31).

Sediment characteristics at Beach Nourishment Area O-45.1 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Table 31.

		Medi	an drai	n size	(1111)		silt/	clay (%		No	latile	solids	(8)
Area	sta.	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr	Jul	Oct	Jan	Apr
							1						
1 31 0	-	0.28	0.28	0.27	0.28	0.6	9.0	0.5	0.8	0.7	0.0	0.5	0.4
1.01.0	• •	95.0	0.28	0.29	0.26	0.3	0.7	9.0	0.6	0.8	0.6	0.3	0.6
1.04-0	4			00.0	75 0	0.8	0.3	0.2	0.7	0.6	0.4	0.0	0.1
0-45.1	m	67.0	0.40				0 90	05 1	89.1	1.7	4.4	4.1	3.2
0-45.1	4	0.01	0.01	0.01	10.0	5.16	0.06	1.00					
Mean		0.23	0.24	0.24	0.23	24.8	24.4	24.1	22.8	1.0	1.4	1.2	1.1
			1111	13									

Beach Nourishment Area O-47.8

Benthic Invertebrates

At Beach Nourishment Area O-47.8, benthic invertebrate densities (total) were significantly different between months and transects (ANOVA, P < 0.05) (Table 32); the lowest mean density occurred in October 1994 (1,306 organisms/m²) and the highest in April 1995 (12,613 organisms/m²) (Table 33). In all months, higher densities occurred at stations along the 30-m transect than those along the 15-m transect.

The mean numbers of taxa/categories (by month) collected in the beach nourishment area ranged from two to five (Table 34). Major benthic invertebrate taxa collected in the beach nourishment area included oligochaetes, *Corbicula fluminea*, *Corophium salmonis*, and Ceratopogonidae larvae (Table 35).

Densities of *Corophium* spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area O-47.8; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect compared to stations along the 15-m transect (Tables 32 and 35). Mean densities of *Corophium* spp. at stations along the 15-m transect ranged from 0 organisms/m² in July and October 1994 to 286 organisms/m² in January 1995. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 487 organisms/m² in July 1994 to 19,413 organisms/m² in April 1995 (Table 35). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 8).

Diversity (H) and Equitability (E) were not significantly different (ANOVA, P > 0.05) between months (Table 32). Mean H values ranged from 0.73 in October 1994 to 1.20 in April 1995, and mean E values ranged from 0.45 in July 1994 to 0.67 in April 1995 (Table 34). Diversity was significantly higher (ANOVA, P < 0.05) at stations along the 30-m

Table 32. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area O-47.8 in the lower Columbia River, July and October 1994 and January and April 1995. Three stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	value
Benthic invertebrate density (log ₁₀ (value + 1)), total	Month Transect Total	3 1 23	5.84 22.99	0.007* 0.000*
Corophium spp. density (log ₁₀ (value + 1))	Month Transect Total	3 1 23	3.09 34.97	0.057 0.000*
Diversity (H)	Month Transect Total	3 1 23	1.07 22.08	0.389 0.000*
Equitability (E)	Month Transect Total	3 1 23	0.52 1.43	0.672 0.249

mean of 10 replicate samples collected at a station; the standard deviation (SD) is also shown for each density. Benthic invertebrate densities (number/m²) at Beach Nourishment Area O-47.8 in the lower Columbia River, refers to the approximate location in river miles from the mouth of the river. Generally, each density is the Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number the beach. Table 33.

		Int	~	octob	er	Janué	ary	Apr	11
Area	sta.	No./m ²	SD	No./m ²	SD	No./m ²	SD	№./ш²	SD
0 14 0	-	573	859	86	272	1,031	1,131	344	601
0.14-0	4 0	2.2	2.002	2,577	1,670	24,309	9,208	60,559	11,238
0-47 8	N (4	687	1,131	0	0	1,374	1,293	4,209	1,919
8 LV-0) 4	1.203	1,087	3,436	1,765	5,412	4,030	6,271	2,397
0.12-0	r u	430	730	191	379	1,890	1,391	1,460	1,218
0-47.8	ס ר	5,583	2,983	1,546	3,407	9,449	9,269	2,835	1,767
Mean		1,856		1,306		7,244		12,613	

the succeeding number refers to the approximate location in river miles from the mouth of the river. Odd- and Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area 0-47.8 in the even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and Table 34.

Area INO. NO. NO. </th <th></th> <th></th> <th></th> <th>July</th> <th></th> <th></th> <th>October</th> <th></th> <th></th> <th>January</th> <th></th> <th></th> <th>April</th> <th></th> <th></th>				July			October			January			April		
0-47.8 1 1 0.00 0.00 1 0.00 2 0.65 2 0.81 0-47.8 2 5 1.69 0.73 2 0.92 6 0.58 0.22 10 1.03 0-47.8 3 1 0.00 0.00 0.92 0.92 6 0.58 0.22 10 1.03 0-47.8 3 1 0.00 0.00 0.00 0.00 3 0.87 0.55 2 0.69 0-47.8 4 5 1.15 0.50 6 1.89 0.73 7 1.92 0-47.8 5 2 0.100 1.00 0.00 3 0.87 0.55 2 0.69 0-47.8 5 2 0.100 1.00 1.00 3 0.53 2 0.79 0-47.8 6 6 0.87 6 1.79 0.73 2 0.79 0-47.8 6 6 0.89 0.73 2 1.07 0.79 0.79 0.79	Area	sta.	No. taxa	н	ы	No. taxa	ш	ы	No. taxa	н	ы	No. taxa	н	ы	
0-47.8 1 1 0.00 0.00 0.00 2 0.05 2 0.073 7 11.92 2 0.073 2 0.079 2 0.079 2 0.079 2 0.079 2 0.079 2 0.079 2 0.079 2 0.079 2 0.079 2 0.079 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ſ</td><td>2 8</td><td>0.81</td><td></td></td<>												ſ	2 8	0.81	
0-47.8 2 1.69 0.73 2 0.92 0.92 6 0.58 0.22 10 1.03 0-47.8 3 1 0.00 0.00 0 0 3 0.87 0.55 2 0.69 0-47.8 3 1 0.00 0.00 0 0 3 0.87 0.55 2 0.69 0-47.8 4 5 1.15 0.50 6 1.89 0.73 7 1.92 0-47.8 5 2 0.10 1.00 1.00 3 0.53 0.33 2 0.79 0-47.8 5 2 0.100 1.00 1.00 3 0.53 0.33 2 0.79 0-47.8 6 6 0.89 0.41 4 1.26 0.69 6 1.79 0.79 0-47.8 6 0.80 0.64 6 1.75 0.68 6 1.97 0-47.8 6 0.80 0.91 4 1.28 0.64 6 1.77 0.79 <	0-47.8	1	г	0.00	0.00	-	0.00	0.00	2	C0.0	CO . D	N	10.0	•	
0-47.8 3 1 0.00 0.00 0.00 0.00 3 0.87 0.55 2 0.69 0-47.8 4 5 2.18 0.94 5 1.15 0.50 6 1.89 0.73 7 1.92 0-47.8 5 2.18 0.94 5 1.15 0.50 6 1.89 0.73 7 1.92 0-47.8 5 2 0.72 2 1.00 1.00 3 0.53 0.33 2 0.79 0-47.8 5 2 0.50 1.00 1.00 3 0.53 0.33 2 0.79 0-47.8 6 6 0.53 0.64 6 1.75 0.68 6 1.97 0-47.8 5 0.90 0.31 4 1.28 0.61 6 1.75 0.68 6 1.97 Mean 3 0.91 4 1.04 0.53 5 1.20 <td>0-47.8</td> <td>7</td> <td>S</td> <td>1.69</td> <td>0.73</td> <td>7</td> <td>0.92</td> <td>0.92</td> <td>9</td> <td>0.58</td> <td>0.22</td> <td>10</td> <td>1.03</td> <td>0.31</td> <td></td>	0-47.8	7	S	1.69	0.73	7	0.92	0.92	9	0.58	0.22	10	1.03	0.31	
0-47.8 4 5 2.18 0.94 5 1.15 0.50 6 1.89 0.73 7 1.92 0-47.8 5 2 0.72 0.72 2 1.00 1.00 3 0.53 0.33 2 0.79 0-47.8 5 2 0.72 0.72 2 1.00 1.00 3 0.53 0.33 2 0.79 0-47.8 6 6 0.80 0.31 4 1.28 0.64 6 1.75 0.68 6 1.97 0-47.8 6 0.80 0.31 4 1.28 0.64 6 1.75 0.68 6 1.97 Mean 3 0.90 0.45 2 0.73 0.51 4 1.04 0.53 5 1.20	0-47.8	ę	٦	0.00	0.00	0	0.00	0.00	e	0.87	0.55	7	0.69	0.69	
0-47.8 5 2 0.72 0.72 2 1.00 1.00 3 0.53 0.33 2 0.79 0-47.8 6 6 0.80 0.31 4 1.28 0.64 6 1.75 0.68 6 1.97 Mean 3 0.90 0.45 2 0.73 0.51 4 1.04 0.53 5 1.20	0-47.8	4	ß	2.18	0.94	ß	1.15	0.50	9	1.89	0.73	7	1.92	0.68	
0-47.8 6 6 0.80 0.31 4 1.28 0.64 6 1.75 0.68 6 1.97 Mean 3 0.90 0.45 2 0.73 0.51 4 1.04 0.53 5 1.20	0-47.8	S	7	0.72	0.72	2	1.00	1.00	e	0.53	0.33	7	0.79	0.79	
Mean 3 0.90 0.45 2 0.73 0.51 4 1.04 0.53 5 1.20	0-47.8	9	9	0.80	0.31	4	1.28	0.64	9	1.75	0.68	9	1.97	0.76	
	Mean		m	06.0	0.45	7	0.73	0.51	4	1.04	0.53	ß	1.20	0.67	1.00
ollected at Beach 5. Three stations were se parallel transects were esents the mean of all e due to rounding.	April														
---	---------														
of benthic invertebrates of ly 1994 through April 19 ach nourishment area; the beach. Each density rep i discrepancies in totals a	January														
andard deviations (SD) of wer Columbia River, Jul 80-m transects in the bea ie high tide mark on the r transect. Any addition	october														
Mean densities (number/m ²) and sti Nourishment Area O-47.8 in the lo sampled along both the 15-m and 3 located about 15 and 30 m from th samples collected along a particula	July														
Table 35.															

Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	1
		BEACH	NOUR I SHMENT	AREA	(15-m)				
Nemertea	0	0	0	0	86	262	0	0022	
memer cea mirbollaria	0	0	0	0	86	262	400	000	
olidochaeta	533	901	30	160	945	1,222	8TC'T	070'T	
corbicula fluminea	30	160	59	222	67	ICT	00	157	
Corophium salmonis	0	0	익		790	C71			
Total	563	897	89	266	1,432	1,283	2,004	2,108	
		BEACH	NOUR I SHMENT	AREA	(30-m)				
			0	267	577	266	143	326	
Nemertea	G11	167	000	157	86	346	200	583	
Turbellaria					C	0	0	0	
Neanthes limnicola	57.	1CT C		00	200	433	916	1,478	
oligochaeta	1,115	C 2 2 2 2		00	29	157	0	0	
Fluminicola virens		0 2 2 2	258	512	458	739	1,088	1,234	
Corbicula fluminea	400	100		1 333	8.676	10,829	18,497	24,170	
Corophium salmonis	107	50		0	114	373	916	1,171	
Corophium spinicorne			00	0	0	0	57	314	
Pontoporeia noyi		218	0 0	0	0	0	258	400	
Chironomidae larvae		151	• c	0	0	0	0	0	
Chironomidae pupae	67	ULC.	1 518	7.297	2.692	4,577	1,002	1,011	
Ceratopogonidae Larvae			0	0	29	157	86	346	
Ephemeroptera nympn	00	00	0	0	0	0	57	314	
						000	100 00	77 660	
Total	3,150	2,793	2,520	2,460	13,057	11,239	23,221	000117	

Figure 8. Number of *Corophium* spp./m² by station at Beach Nourishment Area O-47.8 in the lower Columbia River. Sampling was conducted in July and October 1994 and January and April 1995. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach.

transect compared to stations along the 15-m transect; however, E was not significantly different between transects.

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area O-47.8. Mean median grain size in the beach nourishment area ranged from 0.32 mm in October 1994 to 0.58 mm in April 1995 (Table 36). Percent silt/clay was not significantly different between months or transects (Kruskal-Wallis, P > 0.05). Mean percent silt/clay ranged from 0.3% in April 1995 to 2.7% in July 1994 (Table 36). Percent volatile solids were not significantly different between months (Kruskal-Wallis, P > 0.05), but were significantly higher at stations along the 30-m transect than at stations along the 15-m transect (Kruskal-Wallis, P < 0.05). Mean percent volatile solids ranged from 0.3% in January 1995 to 1.1% in July 1994 (Table 36).

Beach Nourishment Area O-57.0

Benthic Invertebrates

At Beach Nourishment Area O-57.0, benthic invertebrate densities (total) were not significantly different between months (ANOVA, P > 0.05) (Table 37); the lowest mean density occurred in October 1994 (14,041 organisms/m²) and the highest in July 1994 (22,065 organisms/m²) (Table 38). Benthic invertebrate densities were significantly different between the 15-m and 30-m transects (P < 0.05), with the highest densities generally occurring at stations along the 30-m transect (Tables 37 and 38). In the undisturbed area outside of the beach nourishment area (Stations 1 and 2), mean benthic invertebrate densities were lower

Table 36. Sediment characteristics at Beach Nourishment Area O-47.8 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river.

		Medi	an grai	n size	(mm)		silt/	clay (%		Vo	latile	solids	(8)
Area	sta.	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr
8 L1-0	-	0.40	0.24	0.23	0.43	0.1	2.9	0.4	0.1	0.7	0.5	0.2	0.4
8 24-0	• •	0.16	0.16	0.22	1.45	15.2	10.9	1.3	0.7	3.6	0.8	0.6	0.3
0.1.	4 (*		0.36	0.41	0.44	0.3	0.0	0.0	0.4	0.2	0.2	0.2	0.3
0.14-0	. .			0 73	0.38	0.1	0.4	0.4	0.1	0.6	0.5	0.3	0.3
0-41.8	4				с с	د د	0.5	0.3	0.6	0.4	0.4	0.3
0-47.8	ß	0.41	0.39	0.36	0.40	7.0						~ ~	5 0
0-47.8	9	0.47	0.39	0.42	0.35	0.4	0.5	0.8	0.0	8.0	•••		
			CE 0	0.40	0.58	2.7	2.5	0.6	0.3	1.1	0.5	0.3	0.4

Table 37. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area O-57.0 in the lower Columbia River, July and October 1994 and January and April 1995. Four stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference $(P \le 0.05)$ is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate	Month	. 3	0.20	0.899
density (log. (value	Transect	1	15.03	0.001*
+ 1)), total	Total	31		
Corophium spp. density	Month	3	0.07	0.978
$(\log_{10}(value + 1))$	Transect	1	7.39	0.012*
	Total	31		
Diversity (H)	Month	3	3.39	0.034*
	Transect	1	2.93	0.100
	Total	31		
Equitability (E)	Month	3	2.14	0.122
	Transect	1	10.20	0.004*
	Total	31		

standard deviation (SD) is also shown for each density. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the outside of the area in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the mouth of the river. Generally, each density is the mean of 10 replicate samples collected at a station; the Benthic invertebrate densities (number/m²) at Beach Nourishment Area 0-57.0 and two stations (1 and 2) Table 38.

		Ju	ly	octol	Der	Janu	lary	Apr	11
Area	sta.	No./m ²	SD						
0-57.0	-	4,810	2,752	6,271	5,075	5,498	2,073	3,436	1,403
0-57.0	7	16,750	4,847	14,002	3,190	18,984	7,794	14,087	3,344
Mean		10,780		10,137		12,241		8,762	
0-57.0	ო	9,878	4,194	3,608	2,135	7,903	5,182	3,951	1,355
0-57.0	4	114,589	65,665	36,937	15,393	90,452	28,043	85,727	24,740
0-57.0	ß	2,663	3,587	573	859	1,031	887	773	752
0-57.0	9	1,460	1,075	13,314	6,681	2,749	1,660	687	543
0-57.0	7	5,841	3,260	4,553	2,183	3,092	3,368	2,319	1,218
0-57.0	80	19,671	6,672	36,593	9,020	49,220	7,390	42,606	15,378
0-57.0	6	3,522	1,739	4,553	2,106	3,436	2,273	2,768	1,272
0-57.0	10	18,898	7,956	12,198	5,593	10,136	5,534	15,290	3,816
Mean		22,065		14,041		21,002		19,265	

than those in the beach nourishment area in all months (Table 38). No statistical analysis was performed because only two stations were sampled in the undisturbed area.

The mean numbers of taxa/categories (by month) collected in the beach nourishment area were similar, ranging from 6 to 8 (Table 39). In the undisturbed area, the mean numbers of taxa/categories (by month) collected ranged from 4 to 7. Major benthic invertebrate taxa collected in the beach nourishment area included nemerteans, oligochaetes, *Corbicula fluminea*, *Corophium salmonis*, Chironomidae larvae, and Ceratopogonidae larvae (Table 40).

Densities of Corophium spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area O-57.0; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect (Tables 37 and 40). Mean densities of Corophium spp. at stations along the 15-m transect ranged from 1,322 organisms/m² in April 1995 to 3,543 organisms/m² in July 1994. At stations along the 30-m transect, mean densities of Corophium spp. ranged from 4,274 organisms/m² in July 1994 to 14,602 organisms/m² in January 1995 (Table 40). Densities of Corophium spp. also varied spatially along each transect (Fig. 9). With the exception of July 1994, mean densities of Corophium spp. along the 15-m transect in the undisturbed area (Station 1) outside of the beach nourishment area were higher than mean densities at stations along the 15-m transect in the beach nourishment area (Table 40). In July 1994 and January 1995, mean densities of Corophium spp. along the 30-m transect in the undisturbed area (Station 2) outside of the beach nourishment area were higher than mean densities at stations along the 30-m transect in the beach nourishment area, whereas in October 1994 and April 1995, the reverse was true.

Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area 0-57.0 and two stations (1 and 2) outside of the area in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. Table 39.

			July			October			January		1	April	1
Area	sta.	No. taxa	щ	ы	No. taxa	Н	ы	No. taxa	H	ы	No. taxa	н	ы
0-57.0	-	ۍ ا	1.32	0.57	4	0.92	0.46	4	0.71	0.35	'n	0.75	0.47
0-57.0	7	6	1.47	0.47	σ	1.48	0.47	7	0.72	0.26	ŝ	0.98	0.42
Mean		٢	1.40	0.52	L	1.20	0.47	Q	0.72	0.30	4	0.86	0.44
0-57.0	m	9	1.02	0.39	'n	1.88	0.81	ß	1.60	0.69	4	1.25	0.63
0-57.0	4	80	0.36	0.12	10	1.92	0.58	12	1.35	0.38	13	1.26	0.34
0-57.0	ß	8	0.35	0.35	4	1.92	0.96	4	1.78	0.89	4	1.66	0.83
0-57.0	9	4	1.32	0.66	9	1.59	0.61	ß	1.61	0.69	4	1.81	0.91
0-57.0	7	9	1.43	0.55	9	1.50	0.58	L	2.25	0.80	7	1.81	0.65
0-57.0	80	80	1.17	0.39	6	1.37	0.43	11	1.32	0.38	13	1.38	0.37
0-57.0	6	7	2.22	0.79	9	2.20	0.85	9	2.41	0.93	2	2.17	0.93
0-57.0	10	9	1.57	0.61	2	1.64	0.58	9	1.89	0.73	10	1.76	0.53
Mean		Q	1.18	0.48	2	1.75	0.68	7	1.78	0.69	ω	1.64	0.65

1994 through April 1995. Four stations were sampled along both the 15-m and 30-m transects in the beach Nourishment Area O-57.0 and two stations (1 and 2) outside of the area in the lower Columbia River, July beach. Each density represents the mean of all samples collected along a particular transect. Any addition nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the Mean densities (number/m²) and standard deviations (SD) of benthic invertebrates collected at Beach discrepancies in totals are due to rounding. Table 40.

VIUL.		octobe	н	Janual	ry	April		
/m ²	sD	No./m ²	SD	No./m ²	SD	Nо./m ²	SD	
	BEACH 1	NOUR I SHMENT	C AREA (1	[2-m)				
	100	507	781	330	672	176	448	
7		200	138	66	232	99	232	
		CVC	181	462	878	507	730	
70	110'7	757	107	99	304	0	0	
00	212	***	300	1 123	1.818	220	471	
18	242	000	076	CC 11	138	0	0	
22	130			4 0		0	0	
40	677 0	000 1	1 630	1 652	2.392	1.322	1,405	
6/1	3,810	000'T	CO1	10011	0	22	138	
61	765	* ° °	201	154	478	132	371	
43	TAO	747		101				
176	4,265	3,392	2,453	3,876	4,114	2,445	1,620	
1 717028855 0 1		n ² SD BEACH 1 2 , 017 549 549 3 , 876 9 3, 876 6 4, 265 6 4, 265	n ² SD No./m ² BEACH NOURISHMENT BEACH NOURISHMENT 1301 507 0 222 2,017 242 44 549 683 136 0 2 222 1,608 9 3,876 1,608 9 492 242 6 4,265 3,392	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	n^2 SD NO./ m^2 SD NO./ m^2 SD BEACH NOURISHMENT AREA (15-m) 330 672 232 0 22 138 66 232 878 2 0 222 138 66 232 878 2 0 222 138 66 2332 878 2 0 222 138 66 2332 878 2 17 242 481 462 878 1,818 2 136 683 928 1,1123 1,818 138 2 136 0 0 22 138 66 2,392 136 0 0 22 1,123 1,818 1,818 2 1,668 1,639 1,652 2,392 138 3 876 1,662 2,422 2,432 2,432 0 3 190 242 556 16	n^2 SD No./ m^2 SD No./ m^2 SD No./ m^2 SD No./ m^2 BEACH NOURISHMENT AREA 15-m) BEACH NOURISHMENT AREA 15-m) 330 672 176 BEACH NOURISHMENT AREA 781 330 672 176 D 0 222 138 66 232 66 2 0 222 138 66 232 66 66 2 0 222 138 66 232 66 507 2 0 222 138 66 232 66 507 2 192 0 222 138 220 176 66 136 683 928 1,1123 1,818 220 0 2 229 1,818 220 1,338 0 0 0 0 2 229 1,666 1,666 1,666 1,338 2,322 1,332	n^2 SD No./ m^2 SD 2 301 507 781 330 672 176 448 462 878 507 730 0 <td< td=""></td<>

ъ
õ
3
2
.=
+
E
0
C
-
0
4
4
1)
-
9
R
-

	Jul	Y	Octob	er	Janua	ary	Apri	1	
Taxon	No./m ²	SD	No./m ²	SD	Nо./m ²	SD	No./m ²	SD	
		BEACH	NOURISHMEN	NT AREA (30-ш)				
		261	151	953	730	882	322	539	
Nemertea	77	007		326	107	347	451	891	
Turbellaria			2		0	0	0	0	
Polychaeta	22	051		136	0	0	43	272	
Neanthes limnicola	543 CC	DAT PAR	10 673	11.923	19.907	28,811	19,112	28,980	
oligochaeta	110'75	24,404	CLV	679	193	412	43	190	
Fluminicola virens	717	***	1 253	1 480	537	1,129	623	825	
corbicula fluminea	101	140		136	43	190	43	272	
Pisidium spp.			220		838	2.613	730	1,127	
ostracoda	64	577			22	136	0	0	
Hyalella azteca	0	000.		246 3	14 538	13.761	13,551	12,968	
Corophium salmonis	4,274	4,083	670'0T		19 64	229	64	229	
Corophium spinicorne	0 0					0	64	229	
Harpacticoida					C	0	22	136	
Diptera pupae	0	001	210	AKK	558	838	558	860	
chironomidae larvae	859	T, 199			0	0	22	136	
Chironomidae pupae	0			200 0	408	1.167	236	514	
Ceratopogonidae larvae	494	156	500'T	76717		0	22	136	
odonata nymph	0	0.0		105	150	384	107	347	
Ephemeroptera nymph	22	130	1 t			190	64	229	
Hydracarina	0	0	107	887	40	DCT I	5		
motal	38,655	55,190	24,760	15,458	38,139	38,173	36,078	35,696	
TOCAT									

_	-
7	5
(D
;	3
• ;	=
1	=
1	
(0
T)
-	-
ς	>
-	
	1)
-	-
1	0
-	_
	5

	Ju	1y	octob	er	Janua	гy	Apri	1	
raxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	.
					1				
	0	UTSIDE OF	BEACH NOUR	ISHMENT A	(m-cl) M3N				
ol i cochaeta	601	1.075	258	580	172	362	344	601	3
		0	0	0	. 86	272	0	0	
corhicula fluminea	172	362	859	906	430	453	172	362	
coronhium salmonis	3.522	2.234	5,068	4,370	4,810	2,150	2,921	1,008	
coropristant currents	172	362	86	272	0	0	0	0	
Ceratopogonidae larvae	344	1,086	0	0	0	0	0	0	
Total	4,810	2,752	6,271	5,075	5,498	2,073	3,436	1,403	
		OUTSIDE OF	BEACH NOUR	I SHMENT A	REA (30-m)				
	c	c	0	0	86	272	86	272	
Nemetomornha	86	272	0	0	0	0	0	0	
Nema comot pira Nearthes limnicola	00	10	86	272	0	0	0	0	
Neanches IInuitoota Olinochaeta	1.976	1.672	2,319	1,406	601	707	1,460	1,571	
Gastronoda	0	0	86	272	0	0	0	0	
Fluminicola virens	258	580	258	580	172	362	258	580	
Corbicula fluminea	344	830	1,460	1,284	1,117	1,218	859	1,071	
Ostracoda	86	272	0	0	0	0	0	0	
Coronhium spb.	172	543	0	0	0	0	0	0	
Corophium salmonis	12,198	3,922	9,535	3,914	16,836	6,656	11,425	3,437	
Corophium spinicorne	0	0	0	0	86	212	0 0		
Chironomidae larvae	859	1,403	86	272	0	0 0	0 0		
Chironomidae pupae	0	0	86	272	0	0 2 0			
Ceratopogonidae larvae	773	945	0	0 10	000	717	5 0		
odonata nymph	0	0	86	212					

Total

3,344

14,087

7,794

18,984

3,190

14,002

4,846

16,750

control stations outside the study area. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach. Sampling was conducted in July and October 1994 and January and April 1995. Stations 1 and 2 were

Diversity (H) was significantly different (ANOVA, P < 0.05) between months, but not between transects in Beach Nourishment Area O-57.0 (Table 37). Mean H values ranged from 1.18 in July 1994 to 1.78 in January 1995 (Table 39). Equitability (E) was not significantly different (ANOVA, P > 0.05) between months, with mean values ranging from 0.48 in July 1994 to 0.69 in January 1995. Equitability was significantly higher (ANOVA, P < 0.05) at stations along the 15-m transect than at stations along the 30-m transect (Table 37). Mean H and E values were higher in the beach nourishment area than in the undisturbed area, except in July 1994 (Table 39).

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area O-57.0; however, it was significantly higher (P < 0.05) at stations along the 15-m transect (mean = 0.30 mm) than at stations along the 30-m transect (mean = 0.17 mm) (Table 41). Mean median grain size in the beach nourishment area ranged from 0.22 mm in January 1995 to 0.26 mm in July 1994. Percent silt/clay was not significantly different between months (Kruskal-Wallis, P > 0.05), but it was significantly lower at stations along the 15-m transect (Kruskal-Wallis, P < 0.05) than at stations along the 30-m transect. Mean percent silt/clay ranged from 6.4% in July 1994 to 9.2% in January 1995 (Table 41). Percent volatile solids were not significantly different between months (Kruskal-Wallis, P > 0.05), but they were significantly lower (P < 0.05) at stations along the 15-m transect than at stations along the 30-m transect (Table 41). In the beach nourishment area, mean percent volatile solids ranged from 0.8% to 0.9% throughout the study. Mean median grain size was lower in the undisturbed area outside of the beach nourishment area than in the beach nourishment area (Table 41). With the exception of July 1994, mean Sediment characteristics at Beach Nourishment Area O-57.0 and two stations (1 and 2) outside of the area in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Table 41.

		Medi	ian grai	n size	(uu)		silt/	clay (§	(1	Vo	latile	solids	(8)
Area	sta.	Jul	Oct	Jan	Apr	Jul	oct	Jan	Apr	Jul	Oct	Jan	Apr
0-57.0	-	0.17	0,16	0.15	0.18	0.7	6.9	17.7	0.8	0.8	6.0	6.0	0.7
0-57.0	6	0.15	0.10	0.14	0.13	7.1	33.2	20.8	28.9	0.3	2.6	1.2	2.5
Mean		0.16	0.13	0.14	0.16	3.9	20.0	19.2	14.8	0.6	1.8	1.0	1.6
0-57.0	m	0.22	0.26	0.21	0.23	0.5	0.5	1.1	0.2	0.5	0.3	0.8	0.5
0-57.0	4	0.15	0.19	0.17	0.15	27.2	14.5	22.5	29.3	1.5	1.5	2.3	2.2
0-57.0	S	0.47	0.29	0.29	0.33	0.3	0.4	0.6	0.4	0.4	0.7	0.2	0.4
0-57.0	ø	0.23	0.22	0.26	0.28	0.2	0.6	0.4	0.1	1.1	0.8	0.2	0.6
0-57.0	2	0:30	0.28	0.24	0.24	0.4	0.3	1.5	1.3	0.4	6.0	0.6	0.4
0-57.0	œ	0.11	0.11	0.12	0.10	18.8	12.2	22.4	23.2	1.6	1.4	1.6	1.4
0-57.0	6	0.39	0.33	0.34	0.34	6.0	0.9	0.4	0.8	0.8	0.8	0.2	0.4
0-57.0	10	0.25	0.13	0.14	0.16	2.7	29.2	24.5	8.4	9.0	1.1	0.3	0.6
Mean		0.26	0.23	0.22	0.23	6.4	7.3	9.2	8.0	0.9	6.0	0.8	0.8

percent silt/clay values in the undisturbed area outside of the beach area were higher than mean values in the beach nourishment area. Mean percent volatile solids were 1.8% or less for both the undisturbed area and the beach nourishment area (Table 41).

Beach Nourishment Area W-70.1

Benthic Invertebrates

At Beach Nourishment Area W-70.1, benthic invertebrate densities (total) were not significantly different between months (ANOVA, P > 0.05) (Table 42); the lowest mean density occurred in January 1995 (3,561 organisms/m²) and the highest in July 1994 (5,541 organisms/m²) (Table 43). Benthic invertebrate densities were significantly different between the 15-m and 30-m transects (P < 0.05), with the highest densities generally occurring at stations along the 30-m transect (Tables 42 and 43).

The mean numbers of taxa/categories collected in the beach nourishment area were similar for each month, ranging from four to five (Table 44). Major benthic invertebrate taxa collected in the beach nourishment area included oligochaetes, *Corbicula fluminea*, and *Corophium salmonis* (Table 45).

Densities of *Corophium* spp. were not significantly different (ANOVA, P > 0.05) between months in Beach Nourishment Area W-70.1; however, densities were significantly higher (P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect (Tables 42 and 45). Mean densities of *Corophium* spp. at stations along the 15-m transect ranged from 12 organisms/m² in January 1995 to 221 organisms/m² in July 1994. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 3,067 organisms/m²

Table 42. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area W-70.1 in the lower Columbia River, July and October 1994 and January and April 1995. Seven stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate density (log ₁₀ (value + 1)), total	Month Transect Total	3 1 55	0.13 13.33	0.940 0.001*
Corophium spp. density $(\log_{10}(value + 1))$	Month Transect Total	3 1 55	0.68 14.08	0.568 0.000*
Diversity (H)	Month Transect Total	3 1 55	0.85 6.78	0.472 0.012*
Equitability (E)	Month Transect Total	3 1 55	1.52 2.08	0.222 0.156

number refers to the approximate location in river miles from the mouth of the river. Generally, each density Benthic invertebrate densities (number/m²) at Beach Nourishment Area W-70.1 in the lower Columbia River, is the mean of 10 replicate samples collected at a station; the standard deviation (SD) is also shown for each density. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding mark on the beach. Table 43.

I

		Ju	<u>1y</u>	octoł	Der	Janue	ary	Apr	11
Area	sta.	No./m ²	SD	No./m ²	SD	No . /m²	SD	No./m ²	SD
			ц 6	,	7.00 F	100	1000	 	9C0 F
T.0/-W	-	1 1 1 1 1	CTS	6, 633	T / 007	100	981	113	1, 020
W-70.1	3	1,374	1,471	2,663	1,245	1,203	1,950	1,117	910
W-70.1	e	86	272	172	362	1,804	1,485	945	634
W-70.1	4	2,921	1,908	1,031	1,056	2,004	2,612	3,436	1,856
W-70.1	Ŋ	2,062	1,630	2,062	1,774	1,031	789	430	453
W-70.1	9	12,112	4,900	3,350	1,739	1,374	1,471	3,436	1,670
W-70.1	7	86	272	0	0	344	724	172	362
W-70.1	80	172	362	86	272	773	854	1,117	1,406
W-70.1	6	35,133	35,812	945	854	430	607	172	362
W-70.1	10	6,872	2,920	21,217	5,218	31,095	797, T	26,715	6,497
W-70.1	11	687	975	3,951	2,368	859	810	1,031	1,056
W-70.1	12	14,517	6,960	15,376	5,193	7,903	6,165	14,087	4,114
W-70.1	13	86	272	95	286	86	272	86	272
W-70.1	14	344	444	945	1,105	258	415	3,092	2,503
Mean		5,541		3,866		3,561		4,044	

Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area W-70.1 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on and the succeeding number refers to the approximate location in river miles from the mouth of the river. the beach. Table 44.

			July			October	1		January			April	1
Area	sta.	No. taxa	н	ы	No. taxa	ш	ы	No. taxa	ш	ы	No. taxa	ш	ы
1 02-53	-		1.58	.99	4	1.27	0.64	4	1.55	0.77	ß	2.06	0.89
1.07-W	• •	о п	1.80	0.78	4	1.59	0.80	4	1.48	0.74	2	2.10	0.91
W-70.1	1 m	-	0.00	0.00	1	0.00	0.00	2	96.0	96.0	4	1.98	66.0
W-70.1	4	4	1.76	0.88	m	1.04	0.66	S	1.88	0.81	9	2.31	0.89
W-70.1	Ś	S	1.78	0.76	ß	1.50	0.64	e	0.82	0.52	7	0.72	0.72
W-70.1	9	10	2.45	0.74	4	1.41	0.71	ß	2.05	0.88	9	1.56	0.60
1-01-W	. ۲	-	0.00	0.00	0	0.00	0.00	e	1.50	0.95	1	0.00	0.00
W-70.1	00	6	1.00	1.00	I	0.00	0.00	7	0.50	0.50	2	1.91	0.82
W-70.1	6	1	00.00	0.00	4	1.28	0.64	4	1.92	0.96	7	1.00	1.00
W-70.1	10	9	1.00	0.39	7	1.15	0.41	œ	0.86	0.29	6	0.95	0.30
W-70.1	11	4	1.75	0.88	9	2.06	0.80	9	2.37	0.92	2	0.65	0.65
W-70.1	12	L	1.37	0.49	7	2.41	0.86	2	2.24	0.80	10	2.45	0.74
W-70.1	13	1	0.00	0.00	1	0.00	00.0	1	0.00	0.00	1	0.00	0.00
W-70.1	14	-	0.00	0.00	4	1.49	0.75	7	0.92	0.92	9	2.04	0.79
Mean		4	1.04	0.49	4	1.09	0.49	4	1.36	0.72	ß	1.41	0.66

	ere	ere		
45. Mean densities (number/m ²) and standard deviations (SD) of benthic invertebrates collected at Beach	Nourishment Area W-70.1 in the lower Columbia River, July 1994 through April 1995. Seven stations wer	sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects wer	located about 15 and 30 m from the high tide mark on the beach. Each density represents the mean of all	samples collected along a particular transect. Any addition discrepancies in totals are due to rounding.
Table				

	Jul	Y	octobe	r	Januar	Y.	April		
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
		BEACH	NOURISHMENT	REA (1	5-m)				
Nemertea	0	0	261	798	24	144	37	175	
Nematomorpha Nematomorpha	12	103	0	0	0	0	0	0	
memacomorphia Thirbellaria	0	0	12	103	49	201	37	175	
oli acchaota	5 215	17.858	162	449	270	612	160	421	
Gestronode	0	0	0	0	0	0	24	205	
blanchidae	c	C	12	103	0	0	0	0	
Flamorbiace Fliminicola virona		00	12	103	24	144	12	103	
Corbicula fluminea	110	324	647	1.154	319	640	184	483	
Coronhium salmonis	221	615	87	261	12	103	24	144	
Chironomidae larvae	12	103	0	0	0	0	0	0	
Corstonogonidae larvae	37	175	174	479	37	175	24	144	
collembola adult		0	0	0	12	103	0	0	
Hydracarina	0	0	0	0	0	0	12	103	
Total	5,608	17,768	1,369	1,906	748	980	515	737	

Table 45. Continued.

	Jul	٨	octobe	er .	Janua	ry	Apri		
Taxon	No./m ²	SD	No./m²	SD	No./m ²	SD	No./m ²	SD	
		BEACH	NOUR I SHMEN	T AREA (30-m)				
		1 575	677	1 140	336	694	368	896	
Nemertea	242	1, 20C		0	0	0	0	0	
Nematomorpha	20			o c	37	176	344	617	
Turbellaria	00	850	834	1.356	834	1,443	1,534	2,036	
Oligochidae			0	0	0	0	12	103	
Planorplade	12	103	405	1,525	124	449	110	324	
riatta vincita runtura	761	1.060	1,190	1,397	660	1,518	503	907	
COLULTUAL LIAMINICA		. 0	24	144	0	0	12	103	
Ostracoua Coronhium selmonis	3.105	4.694	3.043	6,342	4,133	9,754	4,307	7,838	
corophium samonia	0	0	24	144	50	202	0	0	
corophium spintcome	12	103	0	0	0	0	12	103	
Harpacticolua	368	835	. 0	0	25	145	61	223	
CILITUMMILLAR LALVAS	252	660	282	616	187	689	294	525	
ceratopogonituae tarvae			0	0	0	0	12	103	
Tricnoptera tarvae	12	103	0	0	0	0	0	0	
COLLEMDOLA AULIC Hydracarina	0	0	0	0	50	202	0	0	
motal	5.473	6.415	6,381	8,314	6,436	11,192	7,571	9,429	
TOLAL									

in October 1994 to 4,307 organisms/m² in April 1995 (Table 45). Densities of Corophium spp. also varied spatially along each transect (Fig. 10).

Diversity (H) and Equitability (E) were not significantly different (ANOVA, P > 0.05) between months (Table 42). Mean H values ranged from 1.04 in July 1994 to 1.41 in April 1995, and mean E values ranged from 0.49 in July and October 1994 to 0.72 in January 1995 (Table 44). Diversity was significantly higher (ANOVA, P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect; however, E was not significantly different between transects (Table 42).

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area W-70.1. Mean median grain size in the beach nourishment area ranged from 0.45 mm in October 1994 and January 1995 to 0.52 mm in April 1995 (Table 46). Percent silt/clay was not significantly different between months or transects (Kruskal-Wallis, P > 0.05). Mean percent silt/clay ranged from 0.6% in July 1994 to 1.7% in October 1994 (Table 46). Percent volatile solids were significantly different between months (Kruskal-Wallis, P < 0.05), but they were not significantly different between transects (Kruskal-Wallis, P > 0.05). Mean percent volatile solids ranged from 0.4% in July 1994 and January and April 1995 to 0.7% in October 1994 (Table 46).

Beach Nourishment Area O-75.8

Benthic Invertebrates

At Beach Nourishment Area O-75.8, benthic invertebrate densities (total) were significantly different between months (ANOVA, P < 0.05) (Table 47); the lowest mean

Figure 10. Number of *Corophium* spp./m² by station at Beach Nourishment Area W-70.1 in the lower Columbia River. Sampling was conducted in July and October 1994 and January and April 1995. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the beach.

Sediment characteristics at Beach Nourishment Area W-70.1 in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "W" refers to Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Table 46.

		Medi	an grai	n size	(mm)		silt/c	:lay (%)		Vo	latile s	solids	(8)
Area	sta.	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr
W-70.1	1	0.41	0.34	0.59	0.56	0.2	0.4	0.2	0.4	0.6	0.5	0.5	0.3
W-70.1	2	76.0	0.95	0.49	0.73	0.2	0.1	0.1	0.2	0.3	0.5	0.6	0.3
W-70.1	ო	0.26	0.27	0.28	0.27	0.3	0.5	0.3	0.3	0.5	0.7	0.7	0.4
W-70.1	4	0.26	0.28	0.35	0.38	0.5	0.6	0.4	1.1	0.5	0.5	0.2	0.4
W-70.1	ы С	0.40	0.40	0.43	0.72	0.5	0.2	0.3	0.3	0.6	0.6	0.6	0.5
W-70.1	9	0.88	0.59	0.66	0.60	0.2	0.3	0.2	0.2	0.3	1.0	0.4	0.5
W-70.1	L	0.38	0.35	0.41	0.47	0.3	0.6	0.6	0.5	0.2	0.7	0.6	0.4
W-70.1		0.38	0.36	0.39	0.57	0.3	0.7	0.5	0.5	0.3	0.2	0.2	0.4
W-70.1	6	0.44	0.74	0.37	0.34	0.5	4.1	0.9	0.6	0.5	0.8	0.3	0.4
W-70.1	10	0.38	0.27	0.32	0.30	3.1	5.9	1.5	1.0	0.5	1.2	0.6	0.6
W-70.1	11	0.55	0.36	0.44	0.49	0.4	4.8	0.5	0.6	0.5	0.6	0.1	0.2
W-70.1	12	0.44	0.42	0.37	0.36	0.6	4.8	7.0	3.4	0.6	0.8	0.6	0.6
W-70.1	13	0.42	0.43	0.50	0.63	0.5	0.3	0.6	0.1	0.4	0.5	0.2	0.3
W-70.1	14	0.64	0.47	0.66	06.0	0.2	0.3	0.1	0.2	0.4	0.5	0.3	0.3
Mean		0.49	0.45	0.45	0.52	0.6	1.7	6.0	0.7	0.4	0.7	0.4	0.4

Table 47. Results of two-way analysis of variance for selected benthic invertebrate parameters measured at Beach Nourishment Area O-75.8 in the lower Columbia River, July (all samples were collected on 1 August) and October 1994 and January and April 1995. About 274 m (900 ft) of the upper end of Beach Nourishment Area O-74.5 is included with Beach Nourishment Area O-75.8. Four stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. A significant difference ($P \le 0.05$) is indicated with an asterisk (*).

Parameter	Source	Degrees of freedom	F	P value
Benthic invertebrate density (log ₁₀ (value + 1)), total	Month Transect Total	3 1 31	12.31 12.67	0.000* 0.002*
Corophium spp. density (log ₁₀ (value + 1))	Month Transect Total	3 1 31	10.26 5.40	0.000* 0.029*
Diversity (H)	Month Transect Total	3 1 31	4.55 5.00	0.012* 0.035*
Equitability (E)	Month Transect Total	3 1 31	0.84 0.61	0.488 0.441

density occurred in January 1995 (1,611 organisms/m²) and the highest in July 1994 (8,622 organisms/m²) (Table 48). Benthic invertebrate densities were significantly different between the 15- and 30-m transects (P < 0.05), with the highest densities generally occurring at stations along the 30-m transect (Tables 47 and 48).

The mean numbers of taxa/categories (by month) collected in the beach nourishment area ranged from three to six (Table 49). Major benthic invertebrate taxa collected in the beach nourishment area included oligochaetes, *Corbicula fluminea*, *Corophium salmonis*, and Ceratopogonidae larvae (Table 50).

Densities of *Corophium* spp. were significantly different (ANOVA, P < 0.05) between months in Beach Nourishment Area O-75.8; the highest mean density occurred in October 1994 and the lowest in January 1995 (Table 50). In addition, mean densities of *Corophium* spp. were significantly higher (P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect (Tables 47 and 50). Mean densities of *Corophium* spp. at stations along the 15-m transect ranged from 0 organisms/m² in January 1995 to 3,672 organisms/m² in October 1994. At stations along the 30-m transect, mean densities of *Corophium* spp. ranged from 66 organisms/m² in January 1995 to 4,488 organisms/m² in July 1994 (Table 50). Densities of *Corophium* spp. also varied spatially along each transect (Fig. 11).

Diversity (H) was significantly different (ANOVA, P < 0.05) between months, with mean H values ranging from 1.19 in January 1995 to 1.88 in April 1995 (Table 49). Diversity was significantly higher (ANOVA, P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect. Equitability (E) was not significantly different (ANOVA, P > 0.05) between months or transects (Table 47). Mean E values ranged from 0.67 in July 1994 to 0.84 in April 1995 (Table 49).

shown for each density. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from Benthic invertebrate densities (number/m²) at Beach Nourishment Area O-75.8 in the lower Columbia River, July 1994 through April 1995; about 274 m (900 ft) of the upper end of Beach Nourishment Area O-74.5 is succeeding number refers to the approximate location in river miles from the mouth of the river. Generally, each density is the mean of 10 replicate samples collected at a station; the standard deviation (SD) is also included with Beach Nourishment Area O-75.8. In the "Area" column, the "O" refers to Oregon, and the the high tide mark on the beach. Table 48.

AreaSta.No./m²SDNo./m²SDNo./m²SD $0-75.8$ 17,1304,9273,1782,530172362 $0-75.8$ 24,1232,5554,5532,836430607 $0-75.8$ 32,3191,9023,0921,820430607 $0-75.8$ 419,15611,6523,0921,8204,8101,679 $0-75.8$ 419,15611,6523,5222,7004,8101,679 $0-75.8$ 52,3191,98619,3276,104773634 $0-75.8$ 64,7242,03510,9095,7564,2951,607 $0-75.8$ 712,1129,0043,5222,37786272 $0-75.8$ 817,0945,7764,6351,8901,131 $0-75.8$ 817,0945,77615,4624,6351,130			Jul	Ly.	octol	ber	Janu	ary	Apri	1
0-75.8 1 7,130 4,927 3,178 2,530 172 362 0-75.8 2 4,123 2,555 4,553 2,836 430 607 0-75.8 3 2,319 1,902 3,092 1,820 430 607 0-75.8 3 2,319 1,902 3,092 1,820 430 607 0-75.8 4 19,156 11,652 3,522 2,700 4,810 1,679 0-75.8 5 2,319 1,986 19,327 6,104 773 634 0-75.8 5 2,319 19,327 6,104 773 634 0-75.8 6 4,724 2,035 10,909 5,756 4,295 1,607 0-75.8 7 12,112 9,004 3,522 2,377 86 272 0-75.8 8 17,094 5,776 4,635 1,607 0-75.8 8 17,094 5,776 4,635 1,607 0-75.8 8 17,094 5,776 4,635 1,607	Area	sta.	No./m ²	SD	Nо./m ²	SD	Nо./m ²	SD	No./m ²	SD
0-75.8 2 4,123 2,555 4,553 2,836 430 607 0-75.8 3 2,319 1,902 3,092 1,820 430 607 0-75.8 4 19,156 11,652 3,522 2,700 4,810 1,679 0-75.8 5 2,319 1,986 19,327 6,104 773 634 0-75.8 5 2,319 1,986 19,327 6,104 773 634 0-75.8 6 4,724 2,035 10,909 5,756 4,295 1,607 0-75.8 7 12,112 9,004 3,522 2,377 86 272 0-75.8 8 17,094 5,776 4,635 1,607 1,131 0-75.8 8 17,094 5,776 4,635 1,607 1,131 0-75.8 8 17,094 5,776 4,635 1,890 1,131 0-75.8 8 17,094 5,776 4,635 1,890 1,131	0-75.8	1	7,130	4,927	3,178	2,530	172	362	2,577	1,670
0-75.8 3 2,319 1,902 3,092 1,820 430 607 0-75.8 4 19,156 11,652 3,522 2,700 4,810 1,679 0-75.8 5 2,319 1,986 19,327 6,104 773 634 0-75.8 6 4,724 2,035 10,909 5,756 4,295 1,607 0-75.8 7 12,112 9,004 3,522 2,377 86 272 0-75.8 8 17,094 5,776 16,409 5,756 4,295 1,607 0-75.8 8 17,094 5,776 16,462 4,635 1,890 1,131	0-75.8	7	4,123	2,555	4,553	2,836	430	607	2,921	1,579
0-75.8 4 19,156 11,652 3,522 2,700 4,810 1,679 0-75.8 5 2,319 1,986 19,327 6,104 773 634 0-75.8 6 4,724 2,035 10,909 5,756 4,295 1,607 0-75.8 7 12,112 9,004 3,522 2,377 86 272 0-75.8 8 17,094 5,776 15,462 4,635 1,890 1,131 0-75.8 8 17,094 5,776 15,462 4,635 1,890 1,131	0-75.8	m	2,319	1,902	3,092	1,820	430	607	1,203	923
0-75.8 5 2,319 1,986 19,327 6,104 773 634 0-75.8 6 4,724 2,035 10,909 5,756 4,295 1,607 0-75.8 7 12,112 9,004 3,522 2,377 86 272 0-75.8 8 17,094 5,776 15,462 4,635 1,890 1,131	0-75.8	4	19,156	11,652	3,522	2,700	4,810	1,679	7,903	4,596
0-75.8 6 4,724 2,035 10,909 5,756 4,295 1,607 0-75.8 7 12,112 9,004 3,522 2,377 86 272 0-75.8 8 17,094 5,776 15,462 4,635 1,890 1,131	0-75.8	S	2,319	1,986	19,327	6,104	773	634	1,374	1,086
0-75.8 7 12,112 9,004 3,522 2,377 86 272 0-75.8 8 17,094 5,776 15,462 4,635 1,890 1,131	0-75.8	9	4,724	2,035	10,909	5,756	4,295	1,607	2,491	2,082
0-75.8 8 17,094 5,776 15,462 4,635 1,890 1,131	0-75.8	7	12,112	9,004	3,522	2,377	86	272	601	580
	0-75.8	80	17,094	5,776	15,462	4,635	1,890	1,131	3,866	2,370
Mean 8,622 7,946 1,611	Mean		8,622		7,946		1,611		2,867	

All samples were collected on 1 August 1994.

refers to Oregon, and the succeeding number refers to the approximate location in river miles from the mouth Nourishment Area O-74.5 is included with Beach Nourishment Area O-75.8. In the "Area" column, the "O" Numbers of taxa/categories, Diversities (H), and Equitabilities (E) at Beach Nourishment Area O-75.8 in the of the river. Odd- and even-numbered stations were located about 15 and 30 m, respectively, from the high lower Columbia River, July 1994 through April 1995; about 274 m (900 ft) of the upper end of Beach tide mark on the beach. Table 49.

Area No. No. <th></th> <th></th> <th></th> <th>July'</th> <th></th> <th></th> <th>October</th> <th></th> <th></th> <th>January</th> <th></th> <th></th> <th>April</th> <th></th>				July'			October			January			April	
0-75.8 1 4 1.64 0.82 7 2.48 0.88 2 1.00 1.00 7 2.35 0 0-75.8 2 4 1.73 0.86 4 1.86 0.93 3 1.37 0.86 6 2.37 0 0-75.8 2 4 1.73 0.86 4 1.86 0.93 3 1.37 0.86 6 2.37 0 0-75.8 3 2 0.23 0.23 6 1.75 0.68 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.69 0.90 3 1.73 0 9 1.70 3 1.41 0.55 4 0.90 3 1.69 3 1.73	Area	sta.	No. taxa	Н	ы	No. taxa	н	ы	No. taxa	н	ы	No. taxa	н	ы
0-75.8 2 4 1.73 0.86 4 1.86 0.93 3 1.37 0.86 6 2.37 0 0-75.8 3 2 0.23 0.23 6 1.75 0.68 3 1.58 3 1.66 2.28 4 0.90 3 1.73 0.55 4 0.90 3 1.66 3 1.66 3 1.66 3 1.66 3 1.66 3 1.66 3 3 <td>0-75.8</td> <td>-</td> <td>4</td> <td>1.64</td> <td>0.82</td> <td>2</td> <td>2.48</td> <td>0.88</td> <td>6</td> <td>1.00</td> <td>1.00</td> <td>7</td> <td>2.35</td> <td>0.84</td>	0-75.8	-	4	1.64	0.82	2	2.48	0.88	6	1.00	1.00	7	2.35	0.84
0-75.8 3 2 0.23 0.23 6 1.75 0.68 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 3 1.58 6 1.97 0.76 6 2.17 0.84 6 2.28 0 0-75.8 5 3 1.25 0.799 8 1.73 0.58 2 0.76 5 2.06 9 0-75.8 6 5 2.06 0.89 7 2.05 0.73 6 1.41 0.55 4 0.90 0-75.8 7 3 0.31 0.20 4 1.70 0.85 1 0.00 4 1.84 0-75.8 8 5 1.770 0.85 1 0.00 0.00 4 1.84 0-75.8 8 5 1.770 0.85 1 0.00 0.00 4 1.84 0-75.8 8 5 1.770 0.85 1 0.73 4	0-75.8	2	4	1.73	0.86	4	1.86	0.93	m	1.37	0.86	9	2.37	0.92
0-75.8 4 1.60 0.80 6 1.97 0.76 6 2.17 0.84 6 2.28 0 0-75.8 5 3 1.25 0.79 8 1.73 0.58 2 0.76 5 2.06 0-75.8 5 3 1.25 0.79 8 1.73 0.58 2 0.76 5 2.06 0-75.8 6 5 2.06 0.89 7 2.05 0.73 6 1.41 0.55 4 0.90 0-75.8 7 3 0.31 0.20 4 1.70 0.85 1 0.000 4 1.84 0-75.8 7 3 0.31 0.20 4 1.70 1 1 0.00 4 1.84 0-75.8 8 5 1.79 0.77 6 1.35 4 1.84 0-75.8 8 5 1.79 0.77 6 1.46 0.73 4 1.70 0-75.8 8 5 1.79 0.77 6	0-75.8	m	2	0.23	0.23	9	1.75	0.68	e	1.37	0.86	e	1.58	1.00
0-75.8 5 3 1.25 0.79 8 1.73 0.58 2 0.76 5 2.06 5 2.06 5 2.06 5 2.06 0 5 2.06 5 2.06 0.89 7 2.05 0.73 6 1.41 0.55 4 0.90 0-75.8 7 3 0.31 0.20 4 1.70 0.85 1 0.000 4 1.84 0-75.8 7 3 0.31 0.20 4 1.70 0.85 1 0.00 4 1.84 0-75.8 8 5 1.79 0.77 6 1.35 0.52 4 1.84 0-75.8 8 5 1.79 0.77 6 1.35 0.52 4 1.84 0-75.8 8 5 1.79 0.77 6 1.35 4 1.70 0-75.8 8 5 1.33 0.67 6 1.46 0.73 4 1.70	0-75.8	4	4	1.60	0.80	9	1.97	0.76	9	2.17	0.84	9	2.28	0.88
0-75.8 6 5 2.06 0.89 7 2.05 0.73 6 1.41 0.55 4 0.90 0-75.8 7 3 0.31 0.20 4 1.70 0.85 1 0.00 0.00 4 1.84 0-75.8 7 3 0.31 0.20 4 1.70 0.85 1 0.00 4 1.84 0-75.8 8 5 1.79 0.77 6 1.35 0.52 4 1.46 0.73 4 1.70 0-75.8 8 5 1.79 0.77 6 1.35 0.52 4 1.46 0.73 4 1.70 Mean 4 1.33 0.67 6 1.86 0.74 3 1.19 0.70 5 1.88	0-75.8	ß	m	1.25	0.79	æ	1.73	0.58	ы	0.76	0.76	Ŋ	2.06	0.89
0-75.8 7 3 0.31 0.20 4 1.70 0.85 1 0.00 4 1.84 0-75.8 8 5 1.79 0.77 6 1.35 0.52 4 1.46 0.73 4 1.70 Mean 4 1.33 0.67 6 1.86 0.74 3 1.19 0.70 5 1.88	0-75.8	9	S	2.06	0.89	7	2.05	0.73	9	1.41	0.55	4	06.0	0.45
0-75.8 8 5 1.79 0.77 6 1.35 0.52 4 1.46 0.73 4 1.70 Mean 4 1.33 0.67 6 1.86 0.74 3 1.19 0.70 5 1.88	0-75.8	7	m	0.31	0.20	4	1.70	0.85	1	0.00	00.00	4	1.84	0.92
Mean 4 1.33 0.67 6 1.86 0.74 3 1.19 0.70 5 1.88	0-75.8	œ	ß	1.79	0.77	9	1.35	0.52	4	1.46	0.73	4	1.70	0.85
	Mean		4	1.33	0.67	9	1.86	0.74	m	1.19	0.70	ß	1.88	0.84

' All samples were collected on 1 August 1994.

91

I

Mean densities (number/m ²) and standard deviations (SD) of benthic invertebrates collected at Beach	Nourishment Area O-75.8 in the lower Columbia River, July 1994 through April 1995; about 274 m (900 ft) of the upper end of Beach Nourishment Area O-74.5 is included with Beach Nourishment Area O-75.8. Four	stations were sampled along both the 15-m and 30-m transects in the beach nourishment area; these parallel transects were located about 15 and 30 m from the high tide mark on the beach. Each density represents the	mean of all samples collected along a particular transect. Any addition discrepancies in totals are due to	rounding.
Toble 5	1 auto			

	Jul	y*	octob	er	Januai	CV.	Apri		
Taxon	No./m ²	SD	No./m ²	SD	No./m ²	SD	No./m ²	SD	
		BEACH	NOURISHMEN	T AREA (1	5-т)				
	c	0	215	424	43	190	215	505	
Nemercea			22	136	0	0	129	366	
Turpellaria	4 338	6.052	773	1,114	43	190	279	596	
ULIGOCHAELA Combisiila fluminea	472	700	1,696	2,063	43	190	150	384	
corntrata ritumis	923	2,108	3,436	5,065	0	0	258	444	
Coronhium sninicorne	0	0	236	825	0	0	• •		
coropiitum spriitcoriic usrnactircida	0	0	64	229	0	0	0 0	0	
obirconta large	0	0	0	0	0	0	77	D T T	
Ceratopogonidae larvae	236	645	838	1,409	236	476	386	<u>513</u>	
Total	5,970	6,550	7,280	7,861	365	546	1,439	1,310	
		BEACH	NOURISHMEN	TT AREA (3	(m-0)				
	c	c	172	348	374	783	365	642	
Nemertea			20	136	132	314	150	330	
Turbellaria	2 051	4 270	494	580	573	952	430	992	
Oligochaeta	1551	916	2.448	2,403	374	584	773	969	
Corpleting and			0	0	22	138	0	0	
Pisidium spp.	4.488	4.957	3,973	4,331	99	232	1,009	1,149	
COLOPILIUM SUINICOTOS	0	0	129	311	0	0	0 0		
chirchomidae laruae	107	398	86	326	0	0	77	110	
Ceratopogonidae larvae	1,976	2,051	1,288	1,965	1,278	1,486	1,546	21142	
Total	11,274	9,498	8,611	6,356	2,819	2,212	4,295	3,528	

' All samples were collected on 1 August 1994.

Sediments

Median grain size was not significantly different (ANOVA, P > 0.05) between months or transects in Beach Nourishment Area O-75.8. Mean median grain size in the beach nourishment area ranged from 0.40 mm in October 1994 to 0.51 mm in July 1994 (Table 51). Percent silt/clay and percent volatile solids were not significantly different between months or transects (Kruskal-Wallis, P > 0.05). Mean percent silt/clay ranged from 0.4% in July 1994 and January 1995 to 2.9% in October 1994, and mean percent volatile solids ranged from 0.5% in January and April 1995 to 0.8% in October 1994 (Table 51).

Grain Size/Corophium spp. Relationship

The regression relationship for median grain size and Corophium spp. density was significant (P < 0.05). The regression equation was $\log_{10}(Corophium \text{ spp. density} + 1) = 3.13$ - 2.51 x median grain size (mm); F = 22.66, P = 0.000, and r² = 0.05. Median grain size was a poor predictor of Corophium spp. density, explaining only 5% of the variation in Corophium spp. density (transformed).

DISCUSSION

Assessing the standing crops of benthic invertebrates, particularly *Corophium* spp., in the lower Columbia River is one of the most important means of determining the habitat values of various areas for fishes, including migrating juvenile salmonids. *Corophium salmonis* is an important food for juvenile salmonids (McCabe et al. 1983, 1986; Kirn et al. 1986). *Corophium salmonis* and *C. spinicorne* were the dominant prey for juvenile salmonids collected during spring 1984 at Bonneville Dam (Muir and Emmett 1988). Benthic

April 1995; about 274 m (900 ft) of the upper end of Beach Nourishment Area O-74.5 is included with Beach Nourishment Area O-75.8. In the "Area" column, the "O" refers to Oregon, and the succeeding number refers Sediment characteristics at Beach Nourishment Area O-75.8 in the lower Columbia River, July 1994 through to the approximate location in river miles from the mouth of the river. Table 51.

Area Sta. Jul' Oct Jul Apr Jul Oct Jan Apr Ju 0-75.8 1 0.79 0.44 0.36 0.40 0.4 5.8 0.3 1.8 0 0-75.8 2 0.40 0.36 0.42 0.92 0.8 5.4 0.2 0.6 1 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.3 0.5 0.6 0 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.5 0.6 0 0-75.8 5 0.40 0.38 0.22 0.4 0.3 0.5 4.9 0 0-75.8 5 0.82 0.42 0.38 0.2 0.4 0.5 0.6 0 0-75.8 5 0.82 0.40 0.38 0.2 0.4 0.5 0.4 0 0-75.8 7 0.41 0.59 0.3 0.2 0.4 0.5 0.4 0 0-75.8 7 <t< th=""><th></th><th></th><th>ibow</th><th>an drai</th><th>n size</th><th>(mm)</th><th>-</th><th>silt/</th><th>clay (8</th><th></th><th>VO</th><th>latile</th><th>solids</th><th>(8)</th></t<>			ibow	an drai	n size	(mm)	-	silt/	clay (8		VO	latile	solids	(8)
0-75.8 1 0.79 0.44 0.36 0.40 0.4 5.8 0.3 1.8 0 0-75.8 2 0.40 0.38 0.42 0.92 0.8 5.4 0.2 0.6 1 0-75.8 2 0.40 0.38 0.42 0.92 0.8 5.4 0.2 0.6 0 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.5 0.6 0 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.5 0.6 0 0-75.8 4 0.36 0.39 0.38 0.2 0.40 0.3 0.5 0.4 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.3 0.2 0.4 0	Area	sta.	Jul'	oct	Jan	Apr	Jul	oct	Jan	Apr	Jul	oct	Jan	Apr
0-75.8 1 0.79 0.44 0.36 0.40 0.4 5.8 0.3 1.8 0 0-75.8 2 0.40 0.38 0.42 0.92 0.8 5.4 0.2 0.6 1 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.5 0.6 0 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.5 4.9 0 0-75.8 4 0.36 0.27 0.42 0.22 0.4 6.3 0.5 4.9 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.4 0 0.4 0											2			
0-75.8 1 0.40 0.38 0.42 0.92 0.8 5.4 0.2 0.6 0 0-75.8 2 0.40 0.38 0.41 0.41 0.41 0.3 0.5 0.6 0 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.5 4.9 0 0-75.8 4 0.36 0.27 0.42 0.22 0.4 6.3 0.5 4.9 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.4 0 0 0 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.1 0 0 0 0-75.8 6 0.41 0.59 0.37 0.3 0.2 0.3 0.2 0 <td></td> <td></td> <td>0 70</td> <td>0.44</td> <td>0.36</td> <td>0.40</td> <td>0.4</td> <td>5.8</td> <td>0.3</td> <td>1.8</td> <td>0.4</td> <td>1.7</td> <td>0.2</td> <td>0.5</td>			0 70	0.44	0.36	0.40	0.4	5.8	0.3	1.8	0.4	1.7	0.2	0.5
0-75.8 2 0.40 0.57 0.41 0.41 0.3 0.5 0.6 0 0-75.8 3 0.61 0.57 0.41 0.41 0.3 0.5 4.9 0 0-75.8 4 0.36 0.27 0.41 0.42 0.22 0.4 6.3 0.5 4.9 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.4 0.5 0.4 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.4 0.5 0.4 0 0-75.8 6 0.41 0.59 0.37 0.3 0.2 0.3 0.2 0 0 0-75.8 7 0.41 0.29 0.37 0.29 0.4 1.6 0.6 0 0 0-75.8 8 0.30 0.28 0.34 0.32 0.4 3.5 0.2 0.3 0 0-75.8 8 0.30 0.34 0.32 0.4 3.5 0.3 0 0	8.01-0			0000	64 0	0.92	0.8	5.4	0.2	0.6	1.2	0.4	0.4	0.5
0-75.8 3 0.01 0.5 4.9 0 0-75.8 4 0.36 0.27 0.42 0.22 0.4 6.3 0.5 4.9 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.4 0.5 0.4 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.3 0.2 0 0 0 0 0-75.8 6 0.41 0.54 0.59 0.37 0.3 0.2 0.3 0.2 0	0-75.8		0.40		14 0	0.41	0.3	0.3	0.5	0.6	0.4	0.8	0.2	0.4
0-75.8 4 0.36 0.21 0.22 0.4 0.5 0.4 0 0-75.8 5 0.82 0.40 0.39 0.38 0.2 0.3 0.2 0 0 0 0 0-75.8 6 0.41 0.54 0.59 0.37 0.3 0.2 0	0-75.8	m .	19.0	10.0		<i>cc</i> .0	0.4	6.3	0.5	4.9	0.8	0.5	0.7	0.5
0-75.8 5 0.82 0.40 0.39 0.30 0.2 0.3 0.2 0 0-75.8 6 0.41 0.54 0.59 0.37 0.3 0.2 0.3 0.2 0 0-75.8 7 0.41 0.59 0.37 0.3 0.2 0 0 0 0-75.8 7 0.41 0.29 0.37 0.29 0.4 1.6 0.6 0 0 0-75.8 7 0.41 0.29 0.34 0.32 0.4 3.5 0.2 0.3 0 0-75.8 8 0.30 0.34 0.32 0.4 3.5 0.2 0.3 0	0-75.8	4	0.36	12.0			C 0	0.4	0.5	0.4	0.4	0.7	0.6	0.5
0-75.8 6 0.41 0.54 0.59 0.37 0.3 0.3 0.3 0.0 0 0-75.8 7 0.41 0.29 0.37 0.29 0.4 1.6 0.6 0.0 0 0-75.8 7 0.41 0.29 0.37 0.29 0.4 1.6 0.6 0.0 0 0-75.8 8 0.30 0.28 0.34 0.32 0.4 3.5 0.2 0.3 0 0-75.8 8 0.30 0.28 0.34 0.32 0.4 3.5 0.2 0.3 0	0-75.8	S	0.82	0.40	0.34	00.0			5	0.2	0.5	0.3	0.6	0.5
0-75.8 7 0.41 0.29 0.37 0.29 0.4 1.6 0.6 0.0 0 0-75.8 8 0.30 0.28 0.34 0.32 0.4 3.5 0.2 0.3 0	0-75.8	9	0.41	0.54	0.59	0.37					5	6.0	0.3	0.5
0-75.8 8 0.30 0.28 0.34 0.32 0.4 3.5 0.2 0.3 0	0-75.8	L	0.41	0.29	0.37	0.29	0.4	1.6	0.0	0.0				5
	0-75.8	œ	0.30	0.28	0.34	0.32	0.4	3.5	0.2	0.3	0.5	0.4		
Mean 0.51 0.40 0.41 0.41 0.4	Mean		0.51	0.40	0.41	0.41	0.4	2.9	0.4	1.1	0.6	0.8	0.5	0.5

. All sediment samples were collected on 1 August 1994.

invertebrate communities are relatively stable on a short-term basis, in contrast to fish communities, which can change rapidly. For example, large numbers of juvenile salmon may be present in a particular area of the river after hatchery releases, which are then followed by a dramatic decline as the juveniles migrate out of the area.

At times, *C. salmonis* is also an important prey for nonsalmonid fishes in the river, including American shad (*Alosa sapidissima*), peamouth (*Mylocheilus caurinus*), threespine stickleback (*Gasterosteus aculeatus*), and starry flounder (*Platichthys stellatus*) (McCabe et al. 1983). Also, juvenile white sturgeon (*Acipenser transmontanus*) in the lower Columbia River prey heavily on *C. salmonis* (Muir et al. 1988, McCabe et al. 1993a).

Juvenile salmonids use both nearshore and main channel areas of the lower Columbia River as they migrate to the Pacific Ocean (McCabe et al. 1983, Dawley et al. 1986, Hinton and Emmett 1994). We would expect that juvenile salmonids would migrate along the 10 beach nourishment areas that we studied. In addition, we would expect juvenile salmonids to feed on the abundant populations of *Corophium* spp. in at least some of the these areas.

With the exception of Beach Nourishment Area O-75.8, Corophium spp. densities in the beach nourishment areas were not significantly different (P > 0.05) between months. In a benthic invertebrate study between RKm 40 and 42 in the Columbia River estuary, *Corophium* spp. densities were significantly higher (P < 0.05) in May and September than in July 1993; however, densities for May and September were not significantly different (P > 0.05) (Hinton et al. 1995). Densities of *C. salmonis* were significantly higher (P < 0.05) in September than in July at three wetlands in the Columbia River estuary in 1992 (McCabe and Hinton 1993). At Cottonwood Island (RKm 110-114) in the lower Columbia River, C. salmonis densities were not significantly different (P > 0.05) between July and November 1987, yet densities were significantly higher (P < 0.05) in July 1988 than in December 1988 (McCabe et al. 1990).

Benthic invertebrate densities (total and *Corophium* spp.) were significantly higher (P < 0.05) at stations along the 30-m transect than at stations along the 15-m transect except at Beach Nourishment Area O-45.1, where there was no significant difference (P > 0.05) between transects. Apparently the habitat along the 30-m transects provides a better environment for benthic invertebrate colonization than does the habitat along the 15-m transects, which are closer to the high tide mark on the beach. Generally, the stations along the 30-m transects (Appendix Table).

All 10 beach nourishment areas supported substantial standing crops of *Corophium* spp. (most of which were *C. salmonis*) at times, particularly at stations along the 30-m transects. To show the true value of these habitats it would have been ideal to have collected benthic invertebrate samples in channel areas away from the shoreline, and then to have compared these collections to those made in the beach nourishment areas. Unfortunately, there is little information available documenting standing crops of *C. salmonis* in channel areas away from the shoreline in the beach nourishment study area. Densities of *C. salmonis* in the 10 beach nourishment areas were generally much higher than densities in 8 channel areas (River Mile (RM) 28-131) during comparable seasons in 1988 and 1989 (McCabe et al. 1993b) (Table 52). With the exception of RM 28, standing crops of *C. salmonis* in the 8 channel areas were usually less than 400 organisms/m²; whereas in the 10 beach nourishment areas were areas, densities generally exceeded 1,100 organisms/m².

Table 52. Mean densities of *Corophium salmonis* (number/m²) at various areas in the lower Columbia River. The eight areas sampled in April and September 1988 and 1989 were generally located in channel areas away from the shoreline (McCabe et al. 1993b). Densities for the 10 beach nourishment areas sampled in October 1994 and April 1995 are also shown. The approximate location for an area is shown in River Miles (RM) or the name of the beach nourishment area is listed. The "O" and "W" refer to Oregon and Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river.

		September		April	October
1988	1989	1988	1989	1995	1994
2,420	221	2,229	1,792		
				11,914	3,968
				14,800	5,784
				13,615	4,052
				4,433	1,179
				10,617	2,886
				6,442	884
				9,263	315
				7,436	5,818
		<u> </u>	1996 <u>- 200</u>	2,166	1,565
				634	3,704
46	4	44	39		
27	1	127	256		
117	29	11	651	· · · · ·	
122	54	184	359		
5	5	43	8		
23	13	4	12		
116	241	79	141		
	1988 2,420 46 27 117 122 5 23 116	1988 1989 2,420 221 46 4 27 1 117 29 122 54 5 5 23 13 116 241	198819891988 $2,420$ 221 $2,229$ 4644427112711729111225418455432313411624179	19881989198819892,4202212,2291,7924644439271271127256117291165112254184359555438231341211624179141	198819891988198919932,4202212,2291,79211,91414,80013,6154,4334,4336,4426,4426,4427,4366344644439464443927112725611729116511225418435955438231341211624179141

In conclusion, densities of benthic invertebrates, including *Corophium* spp., generally varied spatially at the 10 beach nourishment sites, with the highest densities typically occurring at stations farthest from the high tide mark on the shore. Although some beach nourishment areas had higher standing crops of *Corophium* spp. than others, all areas 'supported substantial numbers of *Corophium* spp. at times. Since *Corophium* spp. are important prey for juvenile salmonids, and juvenile salmonids migrate along the beach nourishment areas, it is important to insure that *Corophium* spp. populations in these areas are not adversely impacted.

ACKNOWLEDGMENTS

We thank Lawrence Davis, Donald Gruber, and Nathan Cook for their assistance in sampling. We are especially appreciative of the efforts of Randall Cummings, COE, in coordinating and overseeing all the diving activities. The Portland District COE funded the research and conducted the sediment analyses.
CITATIONS

- Blahm, T. H., J. T. Durkin, R. J. McConnell, L. G. Davis, and T. C. Coley. 1979. Portland Harbor predredge and disposal study. Report to U.S. Army Corps of Engineers, Contract DACW57-78-F-0575, 30 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- Blahm, T. H., and R. J. McConnell. 1979. Impact of flow-lane disposal at Dobelbower Bar. Report to U.S. Army Corps of Engineers, Contract DACW57-76-F-0918, 25 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- Dawley, E. M., R. D. Ledgerwood, T. H. Blahm, C. W. Sims, J. T. Durkin, R. A. Kirn, A. E. Rankis, G. E. Monan, and F. J. Ossiander. 1986. Migrational characteristics, biological observations, and relative survival of juvenile salmonids entering the Columbia River estuary, 1966-1983. Report to Bonneville Power Administration, Contract DE-A179-84BP39652, 256 p. (Available from Bonneville Power Administration, Division of Fish and Wildlife-PJ, P.O. Box 3621, Portland, OR 97208.)
- Durkin, J. T., T. C. Coley, K. Verner, and R. L. Emmett. 1981. An aquatic species evaluation at four self scouring sites in the Columbia River estuary. Report to U.S. Army Corps of Engineers, Contract DACW57-79-F-0145, 46 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- Durkin, J. T., and R. L. Emmett. 1980. Benthic invertebrates, water quality, and substrate texture in Baker Bay, Youngs Bay, and adjacent areas of the Columbia River estuary. Report to U.S. Fish Wildl. Serv., Contract 14-16-009-77-939, 44 p. plus appendices. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- Emmett, R. L., G. T. McCabe, Jr., T. C. Coley, R. J. McConnell, and W. D. Muir. 1986. Benthic sampling in Cathlamet Bay, Oregon--1984. Report to U.S. Army Corps of Engineers, Contract DACW57-84-F-0384, 11 p. plus appendices. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- Hinton, S. A., and R. L. Emmett. 1994. Juvenile salmonid stranding in the lower Columbia River, 1992 and 1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-NWFSC-20, 48 p.

- Hinton, S. A., G. T. McCabe, Jr., and R. L. Emmett. 1990. Fishes, benthic invertebrates, and sediment characteristics in intertidal and subtidal habitats at five areas in the Columbia River estuary. Report to U.S. Army Corps of Engineers, Contracts E86880158, E86890107, E86900048, 92 p. plus appendices. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- Hinton, S. A., G. T. McCabe, Jr., and R. L. Emmett. 1995. In-water restoration between Miller Sands and Pillar Rock Island, Columbia River: Environmental surveys, 1992-93. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-NWFSC-23, 47 p.
- Holton, R. L., D. L. Higley, M. A. Brzezinski, K. K. Jones, and S. L. Wilson. 1984. Benthic infauna of the Columbia River estuary. Final report on the benthic infauna work unit of the Columbia River Estuary Data Development Program, 179 p. plus appendices. (Available from CREST, 748 Commercial St., Astoria, OR 97103.)
- Kirn, R. A., R. D. Ledgerwood, and A. L. Jensen. 1986. Diet of subyearling chinook salmon (Oncorhynchus tshawytscha) in the Columbia River estuary and changes effected by the 1980 eruption of Mount St. Helens. Northwest Sci. 60(3):191-196.
- Krebs, C. J. 1978. Ecology: The experimental analysis of distribution and abundance. Harper and Row, New York, 678 p.
- McCabe, G. T., Jr., R. L. Emmett, and S. A. Hinton. 1993a. Feeding ecology of juvenile white sturgeon (*Acipenser transmontanus*) in the lower Columbia River. Northwest Sci. 67(3):170-180.
- McCabe, G. T., Jr., R. L. Emmett, W. D. Muir, and T. H. Blahm. 1986. Utilization of the Columbia River estuary by subyearling chinook salmon. Northwest Sci. 60(2):113-124.
- McCabe, G. T., Jr., and S. A. Hinton. 1990. Benthic infauna and sediment characteristics in the Columbia River near Westport, Oregon, August 1989. Report to U.S. Army Corps of Engineers, Contract E86890154, 14 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- McCabe, G. T., Jr., and S. A. Hinton. 1993. Benthic invertebrates and sediments in vegetated and nonvegetated habitats at three intertidal areas of the Columbia River estuary, 1992. Report to U.S. Army Corps of Engineers, Contract E9592012, 37 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)

- McCabe, G. T., Jr., S. A. Hinton, R. L. Emmett, and R. J. McConnell. 1990. Benthic invertebrates, sediment characteristics, and demersal fishes off Cottonwood Island, Columbia River, before and after rock-groin construction, 1987-1988. Report to U.S. Army Corps of Engineers, Contract DACW57-87-F-0641, 17 p. plus appendix. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- McCabe, G. T., Jr., S. A. Hinton, and R. L. Emmett. 1993b. Report P. Distribution, abundance, and community structure of benthic invertebrates in the lower Columbia River. In R. C. Beamesderfer and A. A. Nigro (editors), Status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam, p. 265-284. Report to Bonneville Power Administration, Contract DE-AI79-86BP63584, 421 p. (Available from Bonneville Power Administration, Division of Fish and Wildlife-PJ, P.O. Box 3621, Portland, OR 97208.)
- McCabe, G. T., Jr., W. D. Muir, R. L. Emmett, and J. T. Durkin. 1983. Interrelationships between juvenile salmonids and nonsalmonid fish in the Columbia River estuary. Fish. Bull., U.S. 81(4):815-826.
- Muir, W. D., and R. L. Emmett. 1988. Food habits of migrating salmonid smolts passing Bonneville Dam in the Columbia River, 1984. Regul. Rivers: Res. & Manage. 2:1-10.
- Muir, W. D., R. L. Emmett, and R. J. McConnell. 1988. Diet of juvenile and subadult white sturgeon in the lower Columbia River and its estuary. Calif. Fish Game 74(1):49-54.
- Ryan, B. F., B. L. Joiner, and T. A. Ryan, Jr. 1985. Minitab handbook, 2nd edition. PWS-KENT Pub., Boston, 386 p.
- Sanborn, H. R. 1975. Benthic infauna observed at five sites in the Columbia River from August 1973 to July 1974. Report to U.S. Army Corps of Engineers and Columbia River Fish. Prog. Office (Nat. Mar. Fish. Serv.), 21 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112.)
- U.S. Army Corps of Engineers. 1991. Federal navigation projects: Columbia River maintenance disposal plan, main and side channels downstream of Bonneville Dam. Navigation Branch, Operations Division, Portland District, U.S. Army Corps of Engineers, Portland, OR, 161 p.

Appendix Figure. PVC coring device used to collect benthic invertebrate and sediment samples in 10 beach nourishment areas in the lower Columbia River, July 1994 through April 1995.

			1 1	
An	nond	1 37	ohl	0
AD	Denu		aUI	C.

Station locations at 10 beach nourishment areas in the lower Columbia River, July 1994 through April 1995. In the "Area" column, the "O" and "W" refer to Oregon and Washington, and the succeeding number refers to the approximate location in river miles from the mouth of the river. Oddand even-numbered stations were located about 15 and 30 m, respectively, from the high tide mark on the shore. Within an area, the same geographic location is shown for station pairs (i.e., consecutive odd- and evennumbered stations) since the distance between the stations within a pair was less than the accuracy of the Global Positioning System (GPS) if the signal was degraded by the U.S. military. The depth (mean lower low water) is a mean from four surveys.

Area	Station	Mean depth (m)	Latitude	Longitude	
					_
0-34.0	1 a	2.1	46°15.516'N	123°28.823'W	
0 0110	2 a	6.2	46°15.516'N	123°28.823'W	
	3	0.3	46°15.454'N	123°28.307'W	
	4	1.5	46°15,454'N	123°28.307 W	
	5	0.5	46°15.365'N	123°28,109'W	
	5	4.6	46°15,365'N	123°28,109 W	
	7	0 1	46°15,273'N	123°27,898 W	
	0	1 9	46°15 273'N	123°27, 898 W	
	0	0.0	46°15 191'N	123°27, 692 W	
	9	0.0	46 15.191 N	123°27 692 W	
	10	0.0	46 15.151 N	123 27.072 W	
	11	0.0	46 15.040 N	123 27.550 W	
	12	0.0	40°13.040'N	123-27.530.W	
W-40 9	1	0.1	46°10.427'N	123°24.866'W	
N-40.5	2	4.1	46°10.427'N	123°24.866'W	
	3	0.0	46°10.367'N	123°24.743'W	
	1	3 7	46°10.367'N	123°24,743'W	
	7	0.2	46°10.378'N	123°24.608'W	
	5	3 7	46°10 378'N	123°24,608 W	
	0	3.1	40 10.570 N	125 241000 1	
W-12 9	1	0.6	46°09.073'N	123°22.314 W	
W-43.0	2	3 6	46°09.073'N	123°22, 314 W	
	2	0.0	46°09.027'N	123°22.077 W	
	3	4.2	46°09 027 N	123°22.077 W	
	4	4.2	46°09 013'N	123°21 820 W	
	5	2.0	46900 013 N	123°21 820 W	
	6	3.0	40 09.013 N	123 21.020 1	
	1	0.1	46-08.979 N	123 21.000 W	
	8	0.2	46°08.979'N	123-21.080.W	
0-44.0	1	0.0	46°08.691'N	123°22.628'W	
	2	1.7	46°08.691'N	123°22.628'W	
	3	0.1	46°08.645'N	123°22.320'W	
	4	0.6	46°08.645'N	123°22.320'W	
	5	0.0	46°08.629'N	123°22.112'W	
	6	1.4	46°08.629'N	123°22.112'W	
	7	0.0	46°08,586'N	123°21.720'W	
	8	0 1	46°08-586'N	123°21.720 W	
	0	0.2	46°08.536'N	123°21,449 W	
	9	2.2	46°08 536'N	123°21,449 W	
	10	2.3	46°08 482 IN	123°21, 115 W	
	11	0.0	46°08 482 M	123°21, 115,W	
	12	0.0	40 00.402'N	122 21.112.M	

Appendix rable. Commune	Ap	penc	lix '	Table	e. C	onti	nued
-------------------------	----	------	-------	-------	------	------	------

Area	Station	Mean depth (m)	Latitude	Longitude
0-44 0	13	0.0	46°08.433'N	123°20.903'W
0-11.0	14	0.0	46°08.433'N	123°20.903'W
	15	0.0	46°08.418'N	123°20.519'W
	16	0.0	46°08.418'N	123°20.519'W
	17	0.0	46°08.400'N	123°20.205'W
	18	0.2	46°08.400'N	123°20.205'W
W-45.0	1	0.0	46°08.931'N	123°21.157'W
	2	1.2	46°08.931'N	123°21.157 W
	3	0.0	46°08.900'N	123°20.859 W
	4	2.9	46°08.900'N	123°20.859'W
	5	0.0	46°08.891'N	123°20.590'W
	6	1.1	46°08.891'N	123°20.590'W
	7	0.1	46°08.905'N	123°20.388'W
	8	0.5	46°08.905'N	123°20.388'W
	9	0.0	46°08.921'N	123°20.084 W
	10	0.0	46°08.921'N	123°20.084'W
0-45.1	1	0.0	46°08.361'N	123°20.041'W
	2	0.0	46°08.361'N	123°20.041'W
	3	0.0	46°08.326'N	123°19.721 W
	4	0.0	46°08.326'N	123°19.721'W
0-47.8	1	0.2	46°08.536'N	123°17.320'W
	2	2.4	46°08.536'N	123°17.320 W
	3	0.0	46°08.573'N	123°17.064'W
	4	3.1	46°08.573'N	123°17.064'W
	5	0.0	46°08.609'N	123°16.821 W
	6	2.6	46°08.609'N	123°16.821'W
0-57.0	1 ^a	0.3	46°10.900'N	123°08.307'W
	2 ^a	1.1	46°10.900'N	123°08.307 W
	3	0.3	46°10.728'N	123°07.577 W
	4	1.8	46°10.728'N	123°07.577 W
	5	0.3	46°10.655'N	123°07.307 W
	6	5.2	46°10.655'N	123°07.307 W
	7	0.4	46°10.550'N	123°07.169'W
	8	2.5	46°10.550'N	123°07.169'W
	9	0.2	46°10.421'N	123°06.952'W
	10	0.4	46°10.421'N	123°06.952'W
W-70.1	1	0.4	46°04.630'N	122°53.413'W
	2	0.8	46°04.630'N	122°53.413'W
	3	0.1	46°04.399'N	122°53.293'W
	4	0.3	46°04.399'N	122°53.293'W
	5	0.4	46°04.246'N	122°53.136'W
	6	1.0	46°04.246'N	122°53.136'W
	7	0.0	46°04.024'N	122°53.025 W
	8	0.1	46°04.024'N	122°53.025 W
	9	0.3	46°03.777'N	122°52.842'W
	10	2.4	46°03.777'N	122°52.842'W
	11	0.5	46°03.573'N	122°52.784'W
	12	2.0	46°03.573'N	122°52.784 W
	13	0.0	46°03.372'N	122°52.647 W
	14	0.2	46°03.372'N	122°52.647'W

Area	Station	Mean depth (m)	Latitude	Longitude
0-75.8 ^b	1	1.2	46°00.412'N	122°51.498'W
0 13.0	2	6.1	46°00.412'N	122°51.498'W
	3	0.4	46°00.160'N	122°51.387'W
	4	5.3	46°00.160'N	122°51.387'W
	5	1.1	45°59.945'N	122°51.205'W
	6	5.3	45°59.945'N	122°51.205'W
	7	0.2	45°59.706'N	122°51.232'W
	8	1.4	45°59.706'N	122°51.232'W

Appendix Table. Continued.

^a Station was located outside of the beach nourishment area.

^b About 274 m of the upper end of Beach Nourishment Area 0-74.5 is included with Beach Nourishment Area 0-75.8.

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost \$3.50.

NMFS-NWFSC-

- 25 HARD, J. J., R. G. KOPE, W. S. GRANT, F. W. WAKNITZ, L. T. PARKER, and R. S. WAPLES. 1996. Status review of pink salmon from Washington, Oregon, and California, 131 p. NTIS No. PB96-162607.
- 24 WEITKAMP, L. A., T. C. WAINWRIGHT, G. J. BRYANT, G. B. MILNER, D. J. TEEL, R. G. KOPE, and R. S. WAPLES. 1995. Status review of coho salmon from Washington, Oregon, and California, 258 p. NTIS No. PB96-106554.
- 23 HINTON, S. A., G. T. MCCABE, JR., and R. L. EMMETT. 1995. In-water restoration between Miller Sands and Pillar Rock Island, Columbia River: Environmental surveys, 1992-93, 47 p. NTIS No. PB95-274445.
- 22 WAKNITZ, F. W., G. M. MATTHEWS, T. WAINWRIGHT, and G. A. WINANS. 1995. Status review for mid-Columbia River summer chinook salmon, 80 p. NTIS No. PB95-260923.
- 21 REPPOND, K. D., and J. K. BABBITT. 1995. Frozen storage stability of fillets, mince, and mixed blocks prepared from unfrozen and previously frozen pink salmon (Oncorhynchus gorbuscha), 57 p. NTIS No. PB95-239828.
- 20 HINTON, S. A., and R. L. EMMETT. 1994. Juvenile salmonid stranding in the lower Columbia River, 1992 and 1993, 48 p. NTIS No. PB95-199352.
- 19 BUSBY, P. J., T. C. WAINWRIGHT, and R. S. WAPLES. 1994. Status review for Klamath Mountains Province steelhead, 130 p. NTIS No. PB95-179677.
- 18 GESSEL, M. H., B. P. SANDFORD, B. H. MONK, and D. A. BREGE. 1994. Population estimates of northern squawfish, *Ptychocheilus oregonensis*, at Bonneville Dam First Powerhouse, Columbia River, 21 p. NTIS No. PB95-198362.
- 17 PARK, L. K., P. MORAN, and R. S. WAPLES (editors). 1994. Application of DNA technology to the management of Pacific salmon: Proceedings of the workshop, 178 p. NTIS No. PB95-172755.
- MEADOR, J. P., R. C. CLARK, JR., P. A. ROBISCH, D. W. ERNEST, J. T. LANDAHL, U. VARANASI, S-L. CHAN, and B. MCCAIN. 1994. National Status and Trends Program, National Benthic Surveillance Project: Pacific Coast. Analyses of elements in sediment and tissue, Cycles I to V (1984-88), 206 p. NTIS No. PB95-125027.
- 15 JOHNSON, O. W., R. S. WAPLES, T. C. WAINWRIGHT, K. G. NEELY, F. W. WAKNITZ, and L. T. PARKER. 1994. Status review for Oregon's Umpqua River sea-run cutthroat trout, 122 p. NTIS No. PB94-194115.
- 14 REICHERT, W. L., and B. FRENCH. 1994. The ³²P-Postlabeling protocols for assaying levels of hydrophobic DNA adducts in fish, 89 p. NTIS No. PB94-203122.